Note 6.3 - Partial Fractions

1 Introduction

In this note, we deal with integrations of rational functions. These are functions that almost never have obvious antiderivatives except those like $\frac{1}{a+b x}$:
or $\frac{1}{1+x^{2}}$:
or some of their very simple variations. Our goal is to turn a general rational function $\frac{p(x)}{q(x)}$ into a combination of these as much as we can.

2 Algebraic Background

Let us review (or preview) some algebraic facts.
Definition 2.1. A real polynomial $p(x)$ is called reducible if $p(x)=q(x) r(x)$ where $\operatorname{deg}(q)<\operatorname{deg}(p)$. It is called irreducible if it is not reducible.

Turning p into $q r$ above is called a factorization of p. Polynomials, like integers, can be uniquely (almost) factorized:

Theorem 2.2 (Unique Factorization). For every real polynomial $p(x)$, there exist irreducible polynomials $q_{1}(x), \ldots, q_{n}(x)$ with $\operatorname{deg}\left(q_{i}\right) \leq \operatorname{deg}(p)$ and integers a_{1}, \ldots, a_{n} so that

$$
p(x)=q_{1}(x)^{a_{1}} \cdots q_{n}(x)^{a_{n}} .
$$

The above factorization is unique up to a constant multiple.

Now we turn to rational function $\frac{p(x)}{q(x)}$. We may assume that $\operatorname{deg}(p)<\operatorname{deg}(q)$ (otherwise apply division algorithm). A theorem in algebra says that it has partial fraction decomposition:

Theorem 2.3. For $\frac{p(x)}{q(x)}$ above, and $q(x)=q_{1}^{a_{1}}(x) \cdots q_{n}^{a_{n}}(x)$ be the factorization of q, the rational function can be written into

$$
\frac{p(x)}{q(x)}=\frac{r_{1}^{1}(x)}{q_{1}(x)}+\frac{r_{2}^{1}(x)}{q_{1}^{2}(x)}+\ldots+\frac{r_{a_{1}}^{1}}{q_{1}^{a_{1}}(x)}+\ldots+\frac{r_{1}^{n}(x)}{q_{n}(x)}+\frac{r_{2}^{n}(x)}{q_{n}^{2}(x)}+\ldots+\frac{r_{a_{n}}^{n}}{q_{n}^{a_{n}}(x)}
$$

where $\operatorname{deg}\left(r_{i}\right)<\operatorname{deg}\left(q_{i}\right)$ for each i.
Of course, this theorem is only practical for low degree polynomials since we have to factor it. Let's study some example.

3 Instruction Manual

The instructions are obvious. Rewrite $\frac{p(x)}{q(x)}$ into its partial fraction decomposition and see if we can integrate that.

4 Examples

