Note 3.3 - Chain Rules and Implicit Differentiations

1 Introduction

We have learned the complete relations between differentiation and elementary algebraic operations. Next we develop the formula for differentiation of composite functions.

2 Linear Approximation

The tangent line to the graph $y=f(x)$ at x_{0} has equation

Certainly $p_{1}\left(x_{0}\right)-f\left(x_{0}\right)=0$. By continuity, p_{1} is quite close to f near x_{0}. But note that the constant function $p_{0}(x)=f\left(x_{0}\right)$ is always "quite close" to f near x_{0} :

But our intuition tells us that p_{1} is "closer" to f than p_{0}. This is indeed true, in the sense that
or equivalently

3 The Chain Rule

Let $f(x)$ and $g(x)$ be differentiable functions and

$$
h(x)=g \circ f(x):=g(f(x)) .
$$

We want to compute $h^{\prime}(x)$ in terms of f, g, and their derivatives. Let's consider the easy (but important) case, where

$$
f(x)=a x+b, \quad g(x)=c x+d
$$

The general case follows from the principle of linear approximation above:

We have arrived at the conclusion.
Theorem 3.1. Given differentiable functions $f(x): A \rightarrow B$ and $g(u): B \rightarrow C$, let $h(x)=g(f(x))$, we have

$$
h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

In Leibniz notations,

$$
\frac{d h}{d x}=\left.\frac{d g}{d u}\right|_{u=f(x)} \frac{d f}{d x}
$$

Let's discuss some examples.

For the composition of multiple functions

$$
h(x)=f_{n} \circ f_{n-1} \circ \cdots \circ f_{1}(x)
$$

we apply the formula repeatedly to obtain

Basically, we differentiate the function one layer at the time, starting from the outermost. Each derivative is evaluated at the composition of functions from f_{1} to the function before that layer.

Here are some examples.

4 The Implicit Differentiations

There are some curves in \mathbb{R}^{2} defined by an equation of x and y (called the level curve), but is not a graph of any function. The typical example is the unit circle $F(x, y)=x^{2}+y^{2}-1=0:$

However, these curves ar nice and smooth with very reasonable tangent line at every point. This is because derivatives are local quantities. Recall, on a graph of a function $y=f(x)$, we only need to know the curve near $P=\left(x_{0}, f\left(x_{0}\right)\right)$ to compute $\left.\frac{d y}{d x}\right|_{P}$:

The same quantity makes perfect sense a point P on any curve if the curve near P is a graph of some function.

We use the same derivative notation $\left.\frac{d y}{d x}\right|_{P}$ (or $\left.\frac{d x}{d y}\right|_{P}$) with the understanding that some part of the curve around P is given by the graph $y=f(x)$ (or $x=g(y))$.

Note that points P on the level curve $F(x, y)=0$ can have neighborhood on which the curve is the graph of $y=f(x)$ or $x=g(y)$ (or both):

There are also points P near which the level curve is not graph of any function:

Computations of $\frac{d y}{d x}$ or $\frac{d x}{d y}$, however, generally do not requiring solving one variable in terms of the others:

5 Derivatives of Inverse Functions

For a differentiable function $f: A \rightarrow B$ with inverse, implicit differentiation can be used to compute the derivative of f^{-1} :

Lets derive the derivatives of inverse trigonometric functions. But let's first define them appropriately:

Then, we have

