Note 8.3 - Taylor and Maclaurin Series

1 Introduction

We come to the final note of the course with a practical question: how does a calculator "compute" values like $\sin 2.3$ or $e^{0.87}$? Physically, a calculator only knows how to add (subtract) and multiply (divide) by the designs of logical circuit. That is, the only functions calculator really knows are polynomials and all other functions are approximated by them.

2 Approximations by Polynomials

We have seen the approximation of a function f at c by its tangent line, which is degree 1 polynomial p_{1} that agrees with f at c to the first order:

Geometrically, this p_{1} pass through $(c, f(c))$ and has the same monotonicity as f near c :

We might want to improve the approximation by a polynomial that also has the same concavity as f near c. To be more precise, we want a degree 2 polynomial $p_{2}(x)$ so that

This polynomial is not very hard to construct:

It is then quite natural to expect a sequence of polynomials $\left\{p_{k}(x)\right\}$. For each k, p_{k} agrees with f at c to order k :

Let's construct these $p_{k}(x)$:

Let's look at the following example $f(x)=e^{x} \sin x$. (See slides)
From the example, we observe two general trends:

These observations are evidence of the very important
Theorem 2.1 (Taylor Theorem).

3 Taylor and Maclaurin Series

Take $c=0$, we derive the four basic Taylor series of smooth functions. They are also known as the Maclaurin series.

$3.1 e^{x}$

$3.2 \sin x$ and $\cos x$
$3.3 \ln x$

3.4 The Binomial Theorem

4 Some Simple Variations

There are a few simple manipulations we can perform on known Taylor series to generate new ones:

The more subtle ones are term-by-term differentiations and integrations. Power series does not always act so nicely with calculus like polynomials:

However, it can be proved that term-by-term calculus is valid within the radius of convergence (excluding endpoints). We may then generate more Taylor/Maclaurin series.

