
1. Space of Bounded Functions and Space of Continuous functions

Let X be a nonempty set. A real-valued function f : X → R is bounded if there exists
M > 0 so that |f(x)| ≤M, for all x ∈ X. The set of bounded real-valued functions on X is
denoted by B(X). Given f, g ∈ B(X), and a ∈ R, we define

(f + g)(x) = f(x) + g(x), (af)(x) = af(x)

for x ∈ X.

Proposition 1.1. The set B(X) forms a real vector space.

Proof. We leave it to the reader as an exercise. �

Let V be a real vector space. A norm on V is a function ‖ · ‖ : V → [0,∞) such that

(1) ‖av‖ = |a|‖v‖ for all a ∈ R and v ∈ V.
(2) ‖v‖ = 0 if and only if v = 0.
(3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V.

A normed vector space over R is a real vector space together with a norm. It is easy to see
that a norm on V induces a metric on V by

d(v, w) = ‖v − w‖.
The metric defined above is called the metric induced from the norm.

Definition 1.1. A normed vector space over R is called a real Banach space if the space
V together with the metric induced from the norm is complete.

On B(X), set
‖f‖∞ = sup

x∈X
|f(x)|.

Definition 1.2. If a sequence {fn} converges to f in B(X), we say that {fn} converges
uniformly to f on X.

If {fn} converges to f in B(X), by definition, given ε > 0, there exists N > 0 so that for
all n ≥ N, ‖fn− f‖∞ < ε. Hence for all x ∈ X, and n ≥ N, |fn(x)− f(x)| ≤ ‖fn− f‖∞ < ε.
In other words, {fn} converges uniformly to f if given ε > 0, there exists N > 0 so that for
all n ≥ N, and all x ∈ X, |fn(x)− f(x)| < ε.

Proposition 1.2. The normed space (B(X), ‖ · ‖∞) is a real Banach space.

Proof. Denote V = B(X). To show that V is complete, we need to show that every Cauchy
sequence is convergent.

Let {fn} be a Cauchy sequence in V. Given ε > 0, there exists N > 0 such that ‖fn −
fm‖∞ < ε. Hence for all x ∈ X,

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε.

This implies that for each x ∈ X, the sequence of real numbers {fn(x)} is a Cauchy sequence.
Since R is complete, {fn(x)} is convergent. Let the limit of {fn(x)} be f(x), i.e. f(x) =
limn→∞ fn(x). Hence we obtain a function f(x) on X. On the other hand, a Cauchy sequence
in a normed space must be bounded. There isM > 0 so that ‖fn‖∞ ≤M. In other words, for
each x ∈ X, |fn(x)| ≤ ‖fn‖∞ ≤ M. Taking n → ∞, we find |f(x)| = limn→∞ |fn(x)| ≤ M,
for each x ∈ X. This shows that f(x) is a bounded function on X and thus f ∈ V. For each
x ∈ X, and n ≥ N,

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ ε.
1
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This shows that for n ≥ N, ‖fn − f‖∞ ≤ ε. We find f is the limit of {fn} in V. We prove
that {fn} is convergent in V. �

If (X, d) is a compact metric space, we can talk more about B(X). Let C(X) be the
space of all real-valued continuous functions on X. Since X is compact, every continuous
function on X is bounded. Therefore C(X) is a subset of B(X). Moreover, since the sum
of continuous functions on X is continuous function on X and the scalar multiplication of
a continuous function by a real number is again continuous, it is easy to check that C(X)
is a vector subspace of B(X).

Definition 1.3. Let (M,d) be a metric space and A be a subset of M. We say that a ∈M
is a limit point of A if there exists a sequence {an} of elements of A whose limit is a. A is
said to be closed if A contains all of its limit points.

Proposition 1.3. Let (X, d) be a compact metric space. The space C(X) of real-valued
continuous functions is a closed subset of the space B(X) of bounded real-valued functions
on X.

Proof. To show that C(X) is closed in B(X), we only need to show that C(X) contains all
of its limit points.

Let f be a bounded real-valued function so that f is a limit point of C(X). There exists
{fn} in C(X) so that {fn} converges to f in B(X). To show f ∈ C(X), we need to show
that f is a continuous function.

Given ε > 0, we can choose N > 0 so that ‖fN − f‖∞ < ε/3. Since fN is uniformly
continuous1, there exists δ > 0, so that if d(x, y) < δ, |fN (x)− fN (y)| < ε/3. If d(x, y) < δ,
we see

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)| ≤ 2‖f − fN‖∞ +
ε

3
< ε.

This shows that f is uniformly continuous on X and hence continuous. �

Remark. It is equivalent to say that the uniform limit of a sequence of continuous functions
is again continuous.

Let (M,d) be a metric space and N be a subset of M. On N, we set

dN (x, y) = d(x, y), x, y ∈ N.

Then (N, dN ) is again a metric space. We call (N, dN ) the metric subspace of (M,d) and
dN the metric induced from d.

Proposition 1.4. Let N be a closed subset of a complete metric space (M,d). Then (N, dN )
is also a complete metric space.

Proof. To show that N is complete, we show that every Cauchy sequence in N has a limit
in N.

Let {an} be a Cauchy sequence in N. Then {an} is a Cauchy sequence in M. Since M is
complete, {an} is convergent to a point a ∈ M. This implies that a is a limit point of N.
Since N is closed, a ∈ N. Hence {an} has a limit a in N.

�

Corollary 1.1. The space C(X) is a real Banach space.

1A continuous function on a compact space is uniformly continuous
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Proof. By Proposition 1.2, B(X) is complete. By Proposition 1.3, C(X) is a closed subset
of B(X). By Proposition 1.4, C(X) is complete.
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