1. Space of Bounded Functions and Space of Continuous functions

Let X be a nonempty set. A real-valued function $f: X \to \mathbb{R}$ is bounded if there exists M > 0 so that $|f(x)| \leq M$, for all $x \in X$. The set of bounded real-valued functions on X is denoted by $\mathcal{B}(X)$. Given $f, g \in \mathcal{B}(X)$, and $a \in \mathbb{R}$, we define

$$(f+g)(x) = f(x) + g(x), \quad (af)(x) = af(x)$$

for $x \in X$.

Proposition 1.1. The set $\mathcal{B}(X)$ forms a real vector space.

Proof. We leave it to the reader as an exercise.

Let V be a real vector space. A norm on V is a function $\|\cdot\|: V \to [0,\infty)$ such that

- (1) ||av|| = |a|||v|| for all $a \in \mathbb{R}$ and $v \in V$.
- (2) ||v|| = 0 if and only if v = 0.
- (3) $||v + w|| \le ||v|| + ||w||$ for $v, w \in V$.

A normed vector space over \mathbb{R} is a real vector space together with a norm. It is easy to see that a norm on V induces a metric on V by

$$d(v,w) = \|v - w\|.$$

The metric defined above is called the metric induced from the norm.

Definition 1.1. A normed vector space over \mathbb{R} is called a real Banach space if the space V together with the metric induced from the norm is complete.

On $\mathcal{B}(X)$, set

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

Definition 1.2. If a sequence $\{f_n\}$ converges to f in $\mathcal{B}(X)$, we say that $\{f_n\}$ converges uniformly to f on X.

If $\{f_n\}$ converges to f in $\mathcal{B}(X)$, by definition, given $\epsilon > 0$, there exists N > 0 so that for all $n \ge N$, $||f_n - f||_{\infty} < \epsilon$. Hence for all $x \in X$, and $n \ge N$, $|f_n(x) - f(x)| \le ||f_n - f||_{\infty} < \epsilon$. In other words, $\{f_n\}$ converges uniformly to f if given $\epsilon > 0$, there exists N > 0 so that for all $n \ge N$, and all $x \in X$, $|f_n(x) - f(x)| < \epsilon$.

Proposition 1.2. The normed space $(\mathcal{B}(X), \|\cdot\|_{\infty})$ is a real Banach space.

Proof. Denote $V = \mathcal{B}(X)$. To show that V is complete, we need to show that every Cauchy sequence is convergent.

Let $\{f_n\}$ be a Cauchy sequence in V. Given $\epsilon > 0$, there exists N > 0 such that $||f_n - f_n|| \leq 1$ $f_m \parallel_{\infty} < \epsilon$. Hence for all $x \in X$,

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \epsilon.$$

This implies that for each $x \in X$, the sequence of real numbers $\{f_n(x)\}$ is a Cauchy sequence. Since \mathbb{R} is complete, $\{f_n(x)\}$ is convergent. Let the limit of $\{f_n(x)\}$ be f(x), i.e. f(x) = $\lim_{n\to\infty} f_n(x)$. Hence we obtain a function f(x) on X. On the other hand, a Cauchy sequence in a normed space must be bounded. There is M > 0 so that $||f_n||_{\infty} \leq M$. In other words, for each $x \in X$, $|f_n(x)| \leq ||f_n||_{\infty} \leq M$. Taking $n \to \infty$, we find $|f(x)| = \lim_{n \to \infty} |f_n(x)| \leq M$, for each $x \in X$. This shows that f(x) is a bounded function on X and thus $f \in V$. For each $x \in X$, and $n \ge N$,

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le \epsilon.$$

 \square

This shows that for $n \ge N$, $||f_n - f||_{\infty} \le \epsilon$. We find f is the limit of $\{f_n\}$ in V. We prove that $\{f_n\}$ is convergent in V. \square

If (X,d) is a compact metric space, we can talk more about $\mathcal{B}(X)$. Let C(X) be the space of all real-valued continuous functions on X. Since X is compact, every continuous function on X is bounded. Therefore C(X) is a subset of $\mathcal{B}(X)$. Moreover, since the sum of continuous functions on X is continuous function on X and the scalar multiplication of a continuous function by a real number is again continuous, it is easy to check that C(X)is a vector subspace of $\mathcal{B}(X)$.

Definition 1.3. Let (M, d) be a metric space and A be a subset of M. We say that $a \in M$ is a limit point of A if there exists a sequence $\{a_n\}$ of elements of A whose limit is a. A is said to be closed if A contains all of its limit points.

Proposition 1.3. Let (X, d) be a compact metric space. The space C(X) of real-valued continuous functions is a closed subset of the space $\mathcal{B}(X)$ of bounded real-valued functions on X.

Proof. To show that C(X) is closed in $\mathcal{B}(X)$, we only need to show that C(X) contains all of its limit points.

Let f be a bounded real-valued function so that f is a limit point of C(X). There exists $\{f_n\}$ in C(X) so that $\{f_n\}$ converges to f in $\mathcal{B}(X)$. To show $f \in C(X)$, we need to show that f is a continuous function.

Given $\epsilon > 0$, we can choose N > 0 so that $||f_N - f||_{\infty} < \epsilon/3$. Since f_N is uniformly continuous¹, there exists $\delta > 0$, so that if $d(x,y) < \delta$, $|f_N(x) - f_N(y)| < \epsilon/3$. If $d(x,y) < \delta$, we see

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| \le 2||f - f_N||_{\infty} + \frac{\epsilon}{3} < \epsilon.$$

This shows that f is uniformly continuous on X and hence continuous.

This shows that f is uniformly continuous on X and hence continuous.

Remark. It is equivalent to say that the uniform limit of a sequence of continuous functions is again continuous.

Let (M, d) be a metric space and N be a subset of M. On N, we set

$$d_N(x,y) = d(x,y), \quad x,y \in N.$$

Then (N, d_N) is again a metric space. We call (N, d_N) the metric subspace of (M, d) and d_N the metric induced from d.

Proposition 1.4. Let N be a closed subset of a complete metric space (M, d). Then (N, d_N) is also a complete metric space.

Proof. To show that N is complete, we show that every Cauchy sequence in N has a limit in N.

Let $\{a_n\}$ be a Cauchy sequence in N. Then $\{a_n\}$ is a Cauchy sequence in M. Since M is complete, $\{a_n\}$ is convergent to a point $a \in M$. This implies that a is a limit point of N. Since N is closed, $a \in N$. Hence $\{a_n\}$ has a limit a in N.

Corollary 1.1. The space C(X) is a real Banach space.

¹A continuous function on a compact space is uniformly continuous

Proof. By Proposition 1.2, $\mathcal{B}(X)$ is complete. By Proposition 1.3, C(X) is a closed subset of $\mathcal{B}(X)$. By Proposition 1.4, C(X) is complete.

3