1. SPACE OF BOUNDED FUNCTIONS AND SPACE OF CONTINUOUS FUNCTIONS

Let X be a nonempty set. A real-valued function f : X — R is bounded if there exists
M > 0 so that |f(x)| < M, for all z € X. The set of bounded real-valued functions on X is
denoted by B(X). Given f,g € B(X), and a € R, we define

(f+9)(x) = f(z) +9(x), (af)(zx)=af(x)

for z € X.
Proposition 1.1. The set B(X) forms a real vector space.
Proof. We leave it to the reader as an exercise. O

Let V be a real vector space. A norm on V is a function || - || : V' — [0, 00) such that
(1) |lav|| = |a|||v]| for all @ € R and v € V.
(2) ||lv|| = 0 if and only if v = 0.
3) llv+wll < [lvf| + [Jw]| for v,w e V.
A normed vector space over R is a real vector space together with a norm. It is easy to see
that a norm on V induces a metric on V by

d(v,w) = [jv —w||.
The metric defined above is called the metric induced from the norm.

Definition 1.1. A normed vector space over R is called a real Banach space if the space
V together with the metric induced from the norm is complete.

On B(X), set
[flloc = sup [ f ()]
zeX

Definition 1.2. If a sequence {f,} converges to f in B(X), we say that {f,} converges
uniformly to f on X.

If {f,} converges to f in B(X), by definition, given € > 0, there exists N > 0 so that for
alln > N, || fn, — flleo < €. Hence for allz € X, and n > N, |fp(x) — f(2)] < || fr— flloo <€
In other words, {f,} converges uniformly to f if given e > 0, there exists N > 0 so that for
alln > N, and all z € X, |fn(z) — f(z)| <e.

Proposition 1.2. The normed space (B(X), || - |[s) is a real Banach space.

Proof. Denote V = B(X). To show that V is complete, we need to show that every Cauchy
sequence is convergent.

Let {fn} be a Cauchy sequence in V. Given € > 0, there exists N > 0 such that || f, —
fmlloo < €. Hence for all z € X,

This implies that for each z € X, the sequence of real numbers { f,,(x)} is a Cauchy sequence.
Since R is complete, {f,(z)} is convergent. Let the limit of {f,(z)} be f(z), i.e. f(z) =
lim;, o0 frn(z). Hence we obtain a function f(x) on X. On the other hand, a Cauchy sequence
in a normed space must be bounded. There is M > 0so that || f,||cc < M. In other words, for
each x € X, |fn(z)| < ||fulloo < M. Taking n — oo, we find |f(z)| = lim,— o0 | fr(2)| < M,
for each z € X. This shows that f(z) is a bounded function on X and thus f € V. For each
xz € X,and n > N,
fule) = @) = Tim_[ful@) ~ fule)] < e

1



2

This shows that for n > N, || fn — fllec < €. We find f is the limit of {f,} in V. We prove
that {f,} is convergent in V. O

If (X,d) is a compact metric space, we can talk more about B(X). Let C'(X) be the
space of all real-valued continuous functions on X. Since X is compact, every continuous
function on X is bounded. Therefore C'(X) is a subset of B(X). Moreover, since the sum
of continuous functions on X is continuous function on X and the scalar multiplication of
a continuous function by a real number is again continuous, it is easy to check that C'(X)
is a vector subspace of B(X).

Definition 1.3. Let (M, d) be a metric space and A be a subset of M. We say that a € M
is a limit point of A if there exists a sequence {ay} of elements of A whose limit is a. A is
said to be closed if A contains all of its limit points.

Proposition 1.3. Let (X, d) be a compact metric space. The space C(X) of real-valued
continuous functions is a closed subset of the space B(X) of bounded real-valued functions
on X.

Proof. To show that C(X) is closed in B(X), we only need to show that C(X) contains all
of its limit points.

Let f be a bounded real-valued function so that f is a limit point of C'(X). There exists
{fn} in C(X) so that {f,} converges to f in B(X). To show f € C(X), we need to show
that f is a continuous function.

Given € > 0, we can choose N > 0 so that ||fxy — fllcc < €/3. Since fx is uniformly
continuous!, there exists § > 0, so that if d(x,y) < 6, |fx(2) — fn(y)| < €/3. If d(z,y) < 6,
we see

£(@) = F@) 2 1£@) = fx (@) + 1 fn (@) = ()| + v () = F)] < 20F = filloe + 5 <

This shows that f is uniformly continuous on X and hence continuous. O

Remark. It is equivalent to say that the uniform limit of a sequence of continuous functions
is again continuous.

Let (M,d) be a metric space and N be a subset of M. On N, we set
dN(x,?/):d(%y)v :Z:)yeN

Then (N, dy) is again a metric space. We call (IV,dy) the metric subspace of (M, d) and
dy the metric induced from d.

Proposition 1.4. Let N be a closed subset of a complete metric space (M, d). Then (N, dy)
is also a complete metric space.

Proof. To show that N is complete, we show that every Cauchy sequence in N has a limit
in N.

Let {a,} be a Cauchy sequence in N. Then {a,} is a Cauchy sequence in M. Since M is
complete, {a,} is convergent to a point a € M. This implies that a is a limit point of N.
Since N is closed, a € N. Hence {ay} has a limit a in N.

O

Corollary 1.1. The space C(X) is a real Banach space.

LA continuous function on a compact space is uniformly continuous
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Proof. By Proposition 1.2, B(X) is complete. By Proposition 1.3, C(X) is a closed subset
of B(X). By Proposition 1.4, C(X) is complete.
O



