2. Base For the Zariski Topology of Spectrum of a ring

Let \(X \) be a topological space. A family of open sets \(\mathcal{B} \) is a base for the topology on \(X \) if every open set of \(X \) is a union of elements of \(\mathcal{B} \).

Proposition 2.1. The family of basic open sets \(\mathcal{B} = \{ D(f) : f \in A \} \) forms a base for the Zariski topology on Spec \(A \).

Proof. Let \(U \) be an open subset of Spec \(A \). Then there exists an ideal \(I \) of \(A \) so that \(U = \text{Spec } A \setminus V(I) \). For each \(x \in U \), we know \(x \notin V(I) \). In other words, \(I \) is not contained in \(x \). Then there exists \(f_x \in I \setminus x \). Hence \(f_x \notin x \) and thus \(x \notin V(f_x) \). It is equivalent to say that \(x \in D(f_x) \).

On the other hand, \((f_x) \subset I \) and hence \(V(I) \subset V(f_x) \). We see that \(D(f_x) \subset U \). Notice that \(U \subset \bigcup_{x \in U} D(f_x) \subset U \). We conclude that \(U = \bigcup_{x \in U} D(f_x) \). This shows that every open set of \(X \) is a union of elements of \(\mathcal{B} \). By definition, \(\mathcal{B} \) forms a basis for the Zariski topology on Spec \(A \). \(\square \)

Definition 2.1. A topological space is quasi compact if and only if every open covering has a finite sub cover.

Proposition 2.2. The spectrum Spec \(A \) of a ring is quasi-compact.

Proof. Let \(\{ U_\lambda \} \) be an open covering of \(X = \text{Spec } A \). Since \(\{ D(f) : f \in A \} \) forms a base for the Zariski topology of \(X \), we can in fact assume that \(U_\lambda \) is of the form \(D(f_\lambda) \) for some \(f_\lambda \in A \). Then \(\bigcup_\lambda D(f_\lambda) = X \). This implies that \(\bigcap_\lambda V(f_\lambda) = \emptyset \), i.e. \(V(\bigcup_\lambda (f_\lambda)) = V(1) \). Hence \(\bigcup_\lambda (f_\lambda) = (1) \). Hence \(1 \in \bigcup_\lambda (f_\lambda) \). By definition, \(1^n \in \bigcup_\lambda (f_\lambda) \) for some \(n \). But \(1^n = 1 \). We see that \(\bigcup_\lambda (f_\lambda) = (1) \). We can choose \(a_{\lambda_1}, \ldots, a_{\lambda_n} \in A \) and \(f_{\lambda_1}, \ldots, f_{\lambda_n} \) so that \(\sum_{i=1}^n a_{\lambda_i} f_{\lambda_i} = 1 \). This implies that the unit ideal \((1) = \sum_{i=1}^n (f_{\lambda_i}) \). This implies that \(X = \bigcup_{i=1}^n D(f_{\lambda_i}) \). Hence Spec \(A \) is quasi-compact. \(\square \)

Corollary 2.1. Suppose \(A \) is a ring and \(f \in A \). Then \(D(f) \) is also quasi-compact.

Proof. We will prove that \(D(f) \) is homeomorphic to Spec \(A_f \), where \(A_f \) is the localization \(S_f^{-1} A \), where \(S_f = \{ f^n : n \geq 0 \} \). Hence \(D(f) \) is the spectrum of a ring. By the previous proposition, \(D(f) \) is quasi-compact. \(\square \)