1. Grothendieck Group of Abelian categories

Roughly speaking, an abelian category is an additive category such that finite direct sum exists, the kernel and the cokernel of a morphism exist, and the coimage of a morphism is isomorphic to its image (first isomorphism theorem holds). For example, if \(A \) is a noetherian ring, the category of finitely generated (left) \(A \)-modules is an abelian category. A morphism \(f : A \to B \) in an abelian category \(A \) is a monomorphism if \(\ker f = 0 \) and an epimorphism if \(\text{coker} f = 0 \). We say that the a sequence

\[
A \xrightarrow{f} B \xrightarrow{g} C
\]
is exact at \(B \) if \(\ker g = \text{Im} f \). A sequence of morphisms

\[
\cdots \to A_{i-1} \to A_i \to A_{i+1} \to \cdots
\]
is said to be exact if it is exact at all \(A_i \).

The Grothendieck group \(K(\mathfrak{A}) \) of an abelian category \(\mathfrak{A} \) is an abelian group generated by the set \(\{ [A] \} \) of symbols \([A] \) of objects of \(\mathfrak{A} \) subject to the relations

\[
[A] = [A'] + [A'']
\]
whenever \(0 \to A' \to A \to A'' \to 0 \) is exact.

Lemma 1.1. Let \(\mathfrak{A} \) be an abelian category and \(K(\mathfrak{A}) \) be its Grothendieck group. Then

1. \([0] = 0 \), and
2. if \(A \cong B \), \([A] = [B] \), and
3. \([A \oplus B] = [A] + [B] \).

Proof. To prove (1), we consider the exact sequence \(0 \to 0 \to 0 \to 0 \to 0 \). To prove (2), we consider the exact sequence \(0 \to 0 \to A \to B \to 0 \). To prove (3), we consider \(0 \to A \to A \oplus B \to B \to 0 \). \(\square \)

The Grothendieck group \(K(\mathfrak{A}) \) of \(\mathfrak{A} \) can be constructed as follows. Let \(F(\mathfrak{A}) \) be the free abelian group generated by the isomorphism classes of objects of \(\mathfrak{A} \) and \(R(\mathfrak{A}) \) be the subgroup generated by \([A] - [A'] - [A''] \) whenever \(0 \to A' \to A \to A'' \to 0 \) is exact. The quotient group \(F(\mathfrak{A})/R(\mathfrak{A}) \) is the Grothendieck group \(K(\mathfrak{A}) \).

Theorem 1.1. Let \(A \) and \(B \) be an abelian category \(\mathfrak{A} \). Then \([A] = [B] \) in \(K(\mathfrak{A}) \) if and only if there exist short exact sequence \(0 \to C' \to C \to C'' \to 0 \) and \(0 \to D' \to D \to D'' \to 0 \) such that \(A \oplus C \cong C'' \oplus D \) is isomorphic to \(B \oplus C \oplus D \oplus D'' \).

An exact functor \(F : \mathfrak{A} \to \mathfrak{B} \) on abelian categories is an additive functor such that for any exact sequence \(0 \to A' \to A \to A'' \to 0 \), the sequence \(0 \to F(A') \to F(A) \to F(A'') \to 0 \) is also exact.

Lemma 1.2. Let \(F : \mathfrak{A} \to \mathfrak{B} \) be an exact functor of abelian categories. Then \(F \) induces a group homomorphism \(F_* : K(\mathfrak{A}) \to K(\mathfrak{B}) \).

Proof. Let us define a map \(F : F(\mathfrak{A}) \to F(\mathfrak{B}) \) by \(F([A]) = [F(A)] \) and extend it additively to all elements of \(F(\mathfrak{A}) \). Since \(F \) is additive,

\[
F([A] - [A'] - [A'']) = F([A]) - F([A']) - F([A'']) = [F(A)] - [F(A')] - [F(A'')].
\]
Since \(F \) is exact, the above identity implies that \(F(R(\mathfrak{A})) \subset R(\mathfrak{B}) \). This shows that the map \(F_* : K(\mathfrak{A}) \to K(\mathfrak{B}) \) sending \([A] + R(\mathfrak{A}) \to [F(A)] + R(\mathfrak{B}) \) is well-defined. This map \(F_* \) can be extend to a group homomorphism. \(\square \)
Let us abuse the use of the notation \([A]\) : the image of \([A]\) in \(K(\mathfrak{A})\) will also be denoted by \([A]\).

Lemma 1.3. Let \(F : \mathfrak{A} \to \mathfrak{B}\) be an exact equivalence of categories. Then \(F_{\ast} : K(\mathfrak{A}) \to K(\mathfrak{B})\) is an isomorphism of abelian groups.

Proof. Let \(G : \mathfrak{B} \to \mathfrak{A}\) be the inverse of \(F\). Then \(G \circ F = 1_{\mathfrak{A}}\) and \(F \circ G = 1_{\mathfrak{B}}\). One can check that \(G_{\ast} : K(\mathfrak{B}) \to K(\mathfrak{A})\) is the inverse of \(F_{\ast} : K(\mathfrak{A}) \to K(\mathfrak{B})\). \(\Box\)

Definition 1.1. Let \(A\) be a noetherian scheme and \(\mathfrak{Coh}(X)\) be the category of coherent sheaves on \(X\). The category \(\mathfrak{Coh}(X)\) is an abelian category. We define the \(K'\)-group of the scheme \(X\) to be the Grothendieck group of \(\mathfrak{Coh}(X)\) :

\[K'(X) = K(\mathfrak{Coh}(X)).\]

Let \(A\) be a commutative noetherian ring and \(X = \text{Spec} A\) be its corresponding noetherian affine scheme. We know that the global section functor

\[\Gamma : \mathfrak{Coh}(X) \to \mathfrak{Mod}(A)\]

sending \(F \to \Gamma(F)\) gives an exact equivalence of abelian categories whose inverse is given by \(M \mapsto \tilde{M}\). Lemma 1.3 implies that:

Corollary 1.1. Let \(A\) be a noetherian ring and \(X = \text{Spec} A\) be its corresponding affine scheme. Then we have a group isomorphism:

\[K'(X) \cong K(\mathfrak{Mod}(A)).\]

Now, let us define the Grothendieck group of a triangulated category.

Let \(\mathcal{C}\) be a triangulated category. The Grothendieck group \(K(\mathcal{C})\) of \(\mathcal{C}\) is the abelian group generated by isomorphism classes of objects of \(\mathcal{C}\) subject to the relation \([A] = [A'] + [A'']\) whenever we have a distinguish triangle \(A' \to A \to A'' \to A'[1]\).

Theorem 1.2. Let \(\mathfrak{A}\) be an abelian category and \(D^b(\mathfrak{A})\) be its bounded derived category. Then the natural map

\[K(\mathfrak{A}) \to K(D^b(\mathfrak{A}))\]

is an isomorphism of abelian groups.

Proof. This will be discussed later. \(\Box\)

Let \(X\) be a noetherian scheme and \(D^b(X)\) be the bounded derived category of coherent sheaves on \(X\). Theorem 1.1 implies:

Corollary 1.2. We have a natural isomorphism if abelian groups: \(K'(X) = K(D^b(X))\).

Notice that furthermore, if \(X\) is regular, \(K'(X) \cong K^0(X)\). In this case, we obtain

\[K^0(X) \cong K(D^b(X))\].