1. **Complex Projective Space**

The n-dimensional complex projective space \(\mathbb{P}^n \) over \(\mathbb{C} \) is the space \(\mathbb{C}^{n+1} \setminus \{0\} \) modulo the relation \(x \sim y \) defined below. Two elements \(x \) and \(y \) in \(\mathbb{C}^{n+1} \setminus \{0\} \) are said to be equivalent if there exists \(\lambda \in \mathbb{C} \setminus \{0\} \) so that \(x = \lambda y \). If \(x \) and \(y \) are equivalent, we write \(x \sim y \). The equivalent class of an element \(x = (x_0, \ldots, x_n) \) of \(\mathbb{C}^{n+1} \setminus \{0\} \) is denoted by \([x] = (x_0 : \cdots : x_n) \). Let \(\pi : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n \) be the quotient map. We equip \(\mathbb{P}^n \) with the quotient topology, i.e. \(U \subseteq \mathbb{P}^n \) is open if and only if \(\pi^{-1}(U) \) is open in \(\mathbb{C}^{n+1} \setminus \{0\} \). Since \(\pi \) is continuous and \(\mathbb{C}^{n+1} \setminus \{0\} \) is connected (it is path connected and hence connected), \(\mathbb{P}^n = \pi(\mathbb{C}^{n+1} \setminus \{0\}) \) is connected. (Continuous functions send connected sets to connected sets).

The unit sphere

\[
S^{2n+1} = \{(x_0, \ldots, x_n) \in \mathbb{C}^n : \sum_{i=0}^n |x_i|^2 = 1 \}
\]

is well-defined (left to the reader) and is a bijection. Let us prove that

\[
S^{2n+1} \sim \mathbb{P}^n.
\]

Let \(\lambda \) be a nonzero complex number \(0 \leq \lambda \), let \(U \) be above. The composition \(\varphi \) we can show that \(\varphi \) is open in \(\mathbb{P}^n \). Therefore \(\varphi \) is a homeomorphism.

This map is well-defined (left to the reader) and is a bijection. Let us prove that \(\varphi \) is a homeomorphism.

To show that \(\varphi \) is continuous, we show that \(\varphi^{-1}(V) \) is open in \(U \) for any open set \(V \) of \(\mathbb{C}^n \). Since \(U \) is open in \(\mathbb{P}^n \), to show that \(\varphi^{-1}(V) \) is open in \(U \), we only need to show that \(\varphi^{-1}(V) \) is open in \(\mathbb{P}^n \). To show that \(\varphi^{-1}(V) \) is open in \(\mathbb{P}^n \), we show that \(\pi^{-1}(\varphi^{-1}(V)) \) is open in \(\mathbb{C}^{n+1} \setminus \{0\} \). Let \(U \) be as above. The composition \(\varphi \circ \pi : U_1 \to \mathbb{C}^n \) is given by

\[
(\varphi \circ \pi)(x_0, \ldots, x_n) = \left(\frac{x_0}{x_1}, \ldots, \frac{x_n}{x_1} \right).
\]

It is easy for us to see that \(\varphi \circ \pi : U_1 \to \mathbb{C}^n \) is continuous. Hence \((\varphi \circ \pi)^{-1}(V) \) is open in \(U_1 \) and hence open in \(\mathbb{C}^{n+1} \setminus \{0\} \) (we use the fact that \(U_1 \) is open in \(\mathbb{C}^{n+1} \setminus \{0\} \). Since \(\pi^{-1}(\varphi^{-1}(V)) = (\varphi \circ \pi)^{-1}(V) \) is open in \(\mathbb{C}^{n+1} \setminus \{0\} \), \(\varphi^{-1}(V) \) is open in \(\mathbb{P}^n \).

Let us prove that \(\varphi \) is an open mapping, i.e. \(\varphi(W) \) is open in \(\mathbb{C}^n \) for any open set \(W \) of \(U \). Since \(W \) is open in \(U \) and \(U \) is an open subset of \(\mathbb{P}^n \), \(W \) is also open in \(\mathbb{P}^n \). Therefore \(W = \pi^{-1}(W) \) is open in \(\mathbb{C}^{n+1} \setminus \{0\} \) and hence open in \(\mathbb{C}^{n+1} \). We only need to show that \(\varphi(W) \) is open. In fact, we can show that \(\varphi \circ \pi : U_1 \to \mathbb{C}^n \) is an open mapping. \(\square \)
Since open sets of the form $I_0 \times I_1 \times \cdots \times I_n$ generates the topology on \mathbb{C}^{n+1}, where I_0, \ldots, I_n are open subsets of \mathbb{C}, open sets of the form $I_0 \times I_1 \times \cdots \times I_n \cap U'$ generates the topology of U'.

Hence open sets of the form $I_0 \times I_1 \times \cdots \times I_n$ with I_i open in $\mathbb{C} \setminus \{0\}$ generates the topology of U'.

More precisely, W' is a union of open sets of the form $I_0 \times I_1 \times \cdots \times I_n$ where I_i is open in $\mathbb{C} \setminus \{0\}$.

Lemma 1.1. Let $f : X \to Y$ be any function. Suppose $\{A_\alpha : \alpha \in \Lambda\}$ is a family of subsets of X. Then

$$f \left(\bigcup_{\alpha \in \Lambda} A_\alpha \right) = \bigcup_{\alpha \in \Lambda} f(A_\alpha).$$

Since any union of open sets is open, if we can show that $(\varphi_1 \circ \pi)(I_0 \times I_1 \times \cdots \times I_n)$ is open in \mathbb{C}^n for any open set of the form $I_0 \times I_1 \times \cdots \times I_n$ with I_i open in $\mathbb{C} \setminus \{0\}$, Lemma 1.1 implies that $(\varphi_1 \circ \pi)(W')$ is open for any open subset W of U_i so that $W' = \pi^{-1}(W)$. Let $J_k = \{x_k/x_i : x_i \in I_i, x_k \in I_k\}$ for any $k \neq i$. Then

$$(\varphi_1 \circ \pi)(I_0 \times \cdots \times I_n) = J_1 \times \cdots \times J_{i-1} \times J_{i+1} \times \cdots \times J_n.$$

If we can show that all J_k are open in \mathbb{C} for any $k \neq i$, by the fact that the product of open sets is open, $J_1 \times \cdots \times J_{i-1} \times J_{i+1} \times \cdots \times J_n$ is open in \mathbb{C}^n and hence $(\varphi_1 \circ \pi)(I_0 \times \cdots \times I_n)$ is open in \mathbb{C}^n.

For each $\mu \in I_i$, we see that

$$J_k = \bigcup_{\mu \in I_i} \{x_k/\mu : x_k \in I_k\} = \bigcup_{\mu \in I_i} \mu^{-1}I_k.$$

Since I_k is open in \mathbb{C}, $\mu^{-1}I_k$ is open for any $\mu \in I_i$. Since any union of open sets is open, J_k is open in \mathbb{C}. We complete the proof of our assertion. We conclude that $\varphi_i : U_i \to \mathbb{C}^n$ is a homeomorphism for all $0 \leq i \leq n$.

Let $0 \leq j < i \leq n$. Then

$$\varphi_i(U_i \cap U_j) = \{(z_1, \cdots, z_n) : z_j \neq 0\}.$$

Hence $\varphi_i(U_i \cap U_j)$ is open. The transition functions are given by

$$(\varphi_j \circ \varphi_i^{-1}) : \varphi_i(U_i \cap U_j) \to \mathbb{C}^n$$

$$(\varphi_j \circ \varphi_i^{-1})(z_1, \cdots, z_n) = \left(\frac{z_1}{z_j}, \ldots, \frac{z_{j-1}}{z_j}, \frac{z_j+1}{z_j}, \ldots, \frac{z_i}{z_j}, \frac{1}{z_j}, \frac{z_i+1}{z_j}, \ldots, \frac{z_n}{z_j}\right).$$

Hence $\varphi_j \circ \varphi_i^{-1}$ is biholomorphic on $\varphi_i(U_i \cap U_j)$.

Before proving \mathbb{P}^n is Hausdorff, let us recall some basic facts from topology.

Lemma 1.2. Let X be a Hausdorff space and K be a compact subset of X. Then K is closed.

Proof. To show that Y is closed, we show that $X \setminus K$ is open. Let us prove that every point of $X \setminus K$ is an interior point of $X \setminus K$. Let $x \in X \setminus K$. For any $y \in X$, $x \neq y$. Since X is Hausdorff, we can find an open neighborhood U_y of x and an open neighborhood V_y of y such that $U_y \cap V_y = \emptyset$. Then $\{V_y : y \in K\}$ forms an open cover for K. Since K is compact, we can find y_1, \ldots, y_k so that $\{V_{y_i} : 1 \leq i \leq k\}$ covers K. Take $U = \bigcap_{i=1}^k U_{y_i}$. Then U is an open neighborhood of x. Let us show that U is contained in $X \setminus K$.

Let $z \in U$. If $z \in K$, then $z \not\in U_{y_i}$ for some $1 \leq i \leq k$. Then $z \in V_{y_i} \cap U \subseteq V_{y_i} \cap U_{y_i} = \emptyset$ which is impossible. Therefore $z \not\in K$ and hence $z \in X \setminus K$. We see that $U \subseteq X \setminus K$. We find that x is an interior point of $X \setminus K$.

Corollary 1.1. Let X be a compact space and Y be a Hausdorff space. Suppose $f : X \to Y$ is a bijective continuous function. Then f is a homeomorphism.

Proof. To show that f is a homeomorphism, we only need to prove that f is a closed mapping. Let A be any closed subset of X. Since X is compact and A is a closed subset of X, A is compact. Since f is continuous and A is compact, $f(A)$ is compact. Since Y is closed and $f(A)$ is compact, $f(A)$ is a closed subset of Y.
Definition 1.1. A topological space X is normal if given any disjoint closed subsets E and F, there exist open neighborhood U of E and V of F such that $U \cap V = \emptyset$.

Proposition 1.2. Any compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let B and K be disjoint closed subset of X. Since X is compact, both B and K are also compact. Let $b \in B$. By the proof of Lemma 1.2 and the compactness of K, we can choose an open neighborhood $V = \bigcup_{i=1}^{k} V_{y_i}$ of K for some $y_1, \ldots, y_k \in K$ and an open neighborhood U_b of b such that $U_b \cap V = \emptyset$. Since B is compact and $\{U_b \mid b \in B\}$ forms an open cover for B, there exist $b_1, \ldots, b_l \in B$ so that $\{U_{b_i} \mid 1 \leq i \leq l\}$ forms an open cover for B. Let $U = \bigcup_{i=1}^{l} U_{b_i}$. Then U is an open neighborhood of B. Claim $U \cap V = \emptyset$. Let $z \in U \cap V$. Then $z \in V$ and $z \in U_{b_i}$ for some i. Hence $z \in V \cap U_{b_i} = \emptyset$ which is not possible. □

Proposition 1.3. Let X and Y be compact spaces. Then the product space $X \times Y$ is also compact.

To prove that \mathbb{F}^n is Hausdorff, we show that \mathbb{F}^n is homeomorphic to S^{2n+1}/S^1. We will show that S^{2n+1}/S^1 is a Hausdorff space.

Define an action of S^1 on S^{2n+1} by

$$S^1 \times S^{2n+1} \to S^{2n+1}, \quad (\lambda, x) \mapsto \lambda x.$$

Let us show that this action is continuous. Let $\alpha : \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}^n$ be the function $(\lambda, x) \mapsto \lambda x$. Then α is continuous. The action of S^1 on S^{2n+1} is the restriction of α to $S^1 \times S^{2n+1}$; hence it is continuous.

Two points x and y of S^{2n+1} are equivalent if there exists $\lambda \in S^1$ so that $x = \lambda y$. The quotient space of S^{2n+1} modulo this relation is denoted by S^{2n+1}/S^1. The equivalent class of $x \in S^{2n+1}$ modulo this relation is denoted by $[x]_{S^1}$. The quotient map $S^{2n+1} \to S^{2n+1}/S^1$ is denoted by q.

Definition 1.2. A group with a topology is called a topological group if the function

$$G \times G \to G, \quad (a, b) \mapsto ab^{-1}$$

is continuous. Here $G \times G$ is equipped with the product topology.

Example 1.1. $\mathbb{C}^* = \{z \in \mathbb{C} : z \neq 0\}$ with the subspace topology induced from \mathbb{C} is a commutative topological group called a noncompact (one dimensional) complex torus. The subset S^1 of \mathbb{C}^* consisting of complex numbers z so that $|z| = 1$ forms a compact subgroup of \mathbb{C}.

To show that S^{2n+1}/S^1 is Hausdorff, we need the following Lemma.

Lemma 1.3. Let X be a compact Hausdorff space and G be a compact topological group. Suppose G acts on X continuously, i.e. the function

$$m : G \times X \to X, \quad (g, x) \mapsto gx$$

is continuous. Then

1. the quotient map $\pi : X \to X/G$ is an open mapping,
2. the quotient map $\pi : X \to X/G$ is a closed mapping,
3. the orbit space X/G is Hausdorff.

Proof. At first, let us prove that the quotient map $\pi : X \to X/G$ is an open mapping. To show that π is an open mapping, we need to show that $\pi(U)$ is open in X/G for any open set U of X. To show that $\pi(U)$ is open in X/G, we need to show that $\pi^{-1}(\pi(U))$ is open in X. Claim that

$$(1.1) \quad \pi^{-1}(\pi(U)) = \bigcup_{g \in G} g(U).$$

Since $g : X \to X$ is a homeomorphism for any $g \in G$, $g(U)$ is open in X for any open subset U of X. If the above equation is true, then $\pi^{-1}(\pi(U))$ is open (any union of open subsets of X is open). Let $y \in \pi^{-1}(\pi(U))$, then $\pi(y) \in \pi(U)$ and hence $\pi(y) = \pi(z)$ for some $z \in U$. Therefore $y = gz \in g(U)$ for some $g \in G$. Hence $y \in \bigcup_{g \in G} g(U)$. Hence $\pi^{-1}(\pi(U)) \subseteq \bigcup_{g \in G} g(U)$. Conversely, if $y \in \bigcup_{g \in G} g(U)$,
then \(y \in g(U) \) for some \(g \in G \). Hence \(y = g z \) for some \(z \in U \). Therefore \(\pi(y) = \pi(z) \in \pi(U) \) which implies that \(y \in \pi^{-1}(\pi(U)) \). Hence \(\bigcup_{g \in G} g(U) \subseteq \pi^{-1}(\pi(U)) \). We conclude that (1.1) holds.

Since \(X \) is compact, any closed subset of \(X \) is also compact. Let \(A \) be a closed subset of \(X \). Then \(A \) is compact. Since any product of compact spaces is compact, \(G \times A \) is compact. Since \(G(A) = m(A, A) \) and \(m \) is continuous, \(G(A) = \bigcup_{g \in G} g(A) \) is compact. To show that \(\pi \) is a closed mapping, we show that \(\pi^{-1}(\pi(A)) \) is closed in \(X \). In fact, \(\pi^{-1}(\pi(A)) = G(A) \) is a compact subset of a Hausdorff space \(Y \), it is closed.

The equivalence class of a point \(x \in X \) is the orbit \([x] = Gx = \{ y \in X : y = gx, g \in G \} \). Since \(G \times X \to X \) is continuous and \(G \) is compact, the orbit \(Gx \) is compact. If \([x] \neq [y] \), then \(Gx \) and \(Gy \) are disjoint compact subsets of \(X \). Since \(X \) is Hausdorff, we can find disjoint open sets \(U \) and \(V \) of \(X \) such that \(Gx \subseteq U \) and \(Gy \subseteq V \). Since \(\pi \) is a closed mapping, it is continuous, \(\pi(U) \) is closed in \(\pi(X) \). Hence \([x] \neq [y] \) implies that \(\pi(U) \neq \pi(V) \) which implies that \(\pi(U) \cap \pi(V) = \emptyset \), i.e. \([x] \neq [y] \) if \(x \neq y \). To show that \(\pi^{-1}(\pi(U)) \) is open, let \(x \in \pi^{-1}(\pi(U)) \). Then \(\pi(x) \in U \). Therefore \(x \in \pi^{-1}(\pi(U)) \).

Since \(X \) is compact and \(\pi \) is a closed mapping, we may choose disjoint open sets \(U \) and \(V \) so that \(Gx \subseteq U \) and \(Gx \subseteq V \). Since \(U \cap W = \emptyset \), \(Gx \cap W = \emptyset \). Hence \([x] \neq [y] \) which implies that \([x] \neq [y] \). Then \(\pi^{-1}(\pi(U)) \) is open in \(\pi(X) \). Since \(\pi \) is an open mapping, \(\pi^{-1}(\pi(U)) \) is open in \(\pi(X) \). We obtain disjoint open sets \(U', V' \). Since \(Gx \subseteq U \), \([y] \in \pi(U) = V' \). Let us show that \([x] \notin [y] \). Therefore \(X \) is a Hausdorff space.

This lemma implies that \(\mathbb{S}^{2n+1}/\mathbb{S}^1 \) is a (compact) Hausdorff space.

Lemma 1.4. The complex projective space \(\mathbb{P}^n \) is homeomorphic to \(\mathbb{S}^{2n+1}/\mathbb{S}^1 \).

Proof. Let \(r : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{S}^{2n+1} \) be the function \(r(z) = \frac{z}{\|z\|} \) for \(z \in \mathbb{C}^{n+1} \setminus \{0\} \). Then \(r \) is continuous. Define \(f : \mathbb{P}^n \to \mathbb{S}^{2n+1}/\mathbb{S}^1 \) by

\[
f([z]) = [r(z)]_{\mathbb{S}^1},
\]

where \(z \) is a representative of \([z]\). Let us check that this map is well-defined. Suppose \(z \) and \(z' \) are equivalent. Then \(z = \mu z' \) for some nonzero complex number \(\mu \). Then

\[
r(z) = \frac{z}{\|z\|} = \frac{\mu z'}{\|\mu\|\|z'\|} = \lambda r(z')
\]

for \(\lambda = \mu/\|\mu\| \). In other words, \([r(z)]_{\mathbb{S}^1} = [r(z')]_{\mathbb{S}^1} \).

If \([r(z)]_{\mathbb{S}^1} = [r(z')]_{\mathbb{S}^1} \), then

\[
\frac{z}{\|z\|} = \lambda \frac{z'}{\|z'\|} \implies z = \lambda \|z\| z'/\|z'\|.
\]

Hence \([z] = [z']\). This shows that \(f \) is injective. Let \([x]_{\mathbb{S}^1} \) be a point in \(\mathbb{S}^{2n+1}/\mathbb{S}^1 \). Choose a representative \(x \) of \([x]_{\mathbb{S}^1} \). Then \(x \in \mathbb{S}^{2n+1} \subseteq \mathbb{C}^{n+1} \setminus \{0\} \) and \(r(x) = x \). Then \(f([x]) = [r(x)]_{\mathbb{S}^1} = [x]_{\mathbb{S}^1} \). We prove that \(f \) is surjective.

By definition, we have the following commutative diagram:

\[
\begin{array}{ccc}
\mathbb{C}^{n+1} \setminus \{0\} & \xrightarrow{r} & \mathbb{S}^{2n+1} \\
\pi \downarrow & & \downarrow q \\
\mathbb{P}^n & \xrightarrow{f} & \mathbb{S}^{2n+1}/\mathbb{S}^1.
\end{array}
\]

To show that \(f \) is continuous, we show that \(f^{-1}(V) \) is open in \(\mathbb{P}^n \) for any open subset \(V \) of \(\mathbb{S}^{2n+1}/\mathbb{S}^1 \). To show that \(f^{-1}(V) \) is open in \(\mathbb{P}^n \), we show that \(\pi^{-1}(f^{-1}(V)) \) is open in \(\mathbb{C}^{n+1} \setminus \{0\} \). By the above commutative diagram,

\[
\pi^{-1}(f^{-1}(V)) = (f \circ \pi)^{-1}(V) = (q \circ r)^{-1}(V) = r^{-1}(q^{-1}(V)).
\]
Since V is open in $\mathbb{S}^{2n+1}/\mathbb{S}^1$, $q^{-1}(V)$ is open in \mathbb{S}^{2n+1}. Since r is continuous and $q^{-1}(V)$ is open in \mathbb{S}^{2n+1}, $r^{-1}(q^{-1}(V))$ is open in $\mathbb{C}^{n+1} \setminus \{0\}$. This proves that $\pi^{-1}(f^{-1}(V))$ is open in $\mathbb{C}^{n+1} \setminus \{0\}$. Hence $f^{-1}(V)$ is open in \mathbb{P}^n. We conclude that f is continuous.

Since f is a bijective continuous map and \mathbb{P}^n is compact and $\mathbb{S}^{2n+1}/\mathbb{S}^1$ is Hausdorff, f is a homeomorphism.

Lemma 1.5. Let X and Y be two spaces. Suppose $f : X \to Y$ is a homeomorphism. Then X is Hausdorff if and only if Y is Hausdorff.

Proof. Let us assume that X is Hausdorff. Suppose y_1 and y_2 are two points of Y such that $y_1 \neq y_2$. Since f is surjective, there exist x_1 and x_2 in X so that $f(x_i) = y_i$ for $i = 1, 2$. Since f is a function, $x_1 \neq x_2$. (If $x_1 = x_2$, $y_1 = f(x_1) = f(x_2) = y_2$.) Since X is Hausdorff, there exist open neighborhoods U_i of x_i so that $U_1 \cap U_2 = \emptyset$. Let $V_i = f(U_i)$ for $i = 1, 2$. Then V_i are open neighborhood of y_i for $i = 1, 2$. Claim $V_1 \cap V_2 = \emptyset$. Suppose not. Take $z \in V_1 \cap V_2$. By surjectivity of f, we can find $x \in X$ so that $z = f(x)$. Then $x \in f^{-1}(V_1 \cap V_2) \subseteq U_1 \cap U_2 = \emptyset$ which is impossible. □

Since \mathbb{P}^n is homeomorphic to $\mathbb{S}^{2n+1}/\mathbb{S}^1$ and $\mathbb{S}^{2n+1}/\mathbb{S}^1$ is Hausdorff, \mathbb{P}^n is also Hausdorff.