1. A REMARK ON THE SPACE OF CONTINUOUS FUNCTIONS AND SQUARE INTEGRABLE
FUNCTIONS

Let (X, X, ) be a measure space and £2(X) be the set of all complex-valued Lebesgue
measurable functions on X such that
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The function £3(X) — R defined by f ~ ([ |f|?dz)'/? is not a norm on £2(X) because
there is a nonzero measurable function f such that [y |f|*dz = 0. We therefore consider an
equivalence relation on £2(X) defined as follows. We say that f is equivalent to g in £2(X)
if f = g almost everywhere. That is, there exists a measure zero set Z such that f = g on
X\ Z. The quotient space of £2(X) modulo the relation is denoted by L?(X). The quotient
space is also a complex vector space: we define
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where [f],[g] € L?*(X) and a € C. We call L?(X) the space of square integrable functions
on X. Let [f] be an equivalent class in L?(X). We define
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for a representative f in [f]. This is a well-defined function on L?(X) and hence we can
verify that it gives a norm on L?(X). Moreever, if we set

(W Lol = /X f(@)a(@)du,

where f, g are representatives of [f] and [g] respectively. Then ||[f”|%2(X) = ([f],[f]) and

L?(X) becomes a complex Hilbert space.

Let K be a compact subset of R™. The space of complex-valued continuous functions on
K and the space of complex valued Lebesgue square integrable functions are denoted by
C(K) and L?(K) respectively. A continuous function on K is Lebesgue measurable. (They
are Borel functions). Moreover, for any f € C(K), one has
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where | K| is the Lebesgue measure of K. We find that f is also Lebesgue square integrable.
Given f € C(K), we denote [f] its equivalent class in L?(K). We obtain a map
T:C(K)— L*(K), f~I[f]
T is obviously linear.

Definition 1.1. Let T': X — Y be a linear operators where X and Y are normed spaces.
T is said to be bounded if there exists M > 0 such that

|Tzlly < M|zlx
for all z € X.

By (1.1), IT(f)llz2x)y < M| flloo, for all f € C(K), where M = /K] and hence
T :C(K) — L*(K) is a bounded linear operator. Moreover, if T(f) = T(g) for f,g € C(K),
then f = ¢ almost everywhere on K. Since both f and g are continuous on K and f =g
almost everywhere on K, f must be equal to g. If not, assume f(zg) # g(z¢) for some
xo € K, then there exists an open ball B(zg,d) such that f(z) # g(z) on B(xg,d). Since
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B(xg,0) has positive measure and f # g on B(xg, ), we find that f is not equal to g almost
everywhere. This leads to a contradiction to the assumption that f = g almost everywhere.
This shows that ker 7" = {0}. Let V"= T'(C(K)) be the image of C(K') under T. We obtain a
linear isomorphism 7' : C(K) — V. We identify C(K) with the linear subspace V of L?(K)
via T. Hence we can think of C'(K) as a vector subspace of L?(K). Similarly, for each p > 1,
we can consider the space LP(K'). We identify C'(K) as a vector subspace of LP(K).



