1. A Remark on the space of continuous functions and Square integrable functions

Let (X, Σ, μ) be a measure space and $\mathcal{L}^2(X)$ be the set of all complex-valued Lebesgue measurable functions on X such that

$$\int_X |f(x)|^2 d\mu < \infty.$$

The function $\mathcal{L}^2(X) \to \mathbb{R}$ defined by $f \mapsto (\int_X |f|^2 dx)^{1/2}$ is not a norm on $\mathcal{L}^2(X)$ because there is a nonzero measurable function f such that $\int_X |f|^2 dx = 0$. We therefore consider an equivalence relation on $\mathcal{L}^2(X)$ defined as follows. We say that f is equivalent to g in $\mathcal{L}^2(X)$ if f = g almost everywhere. That is, there exists a measure zero set Z such that f = g on $X \setminus Z$. The quotient space of $\mathcal{L}^2(X)$ modulo the relation is denoted by $L^2(X)$. The quotient space is also a complex vector space: we define

$$[f] + [g] = [f + g], \quad a[f] = [af]$$

where $[f], [g] \in L^2(X)$ and $a \in \mathbb{C}$. We call $L^2(X)$ the space of square integrable functions on X. Let [f] be an equivalent class in $L^2(X)$. We define

$$||[f]||_{L^2(X)}^2 = \int_X |f(x)|^2 dx$$

for a representative f in [f]. This is a well-defined function on $L^2(X)$ and hence we can verify that it gives a norm on $L^2(X)$. Moreover, if we set

$$\langle [f], [g] \rangle = \int_X f(x) \overline{g(x)} d\mu,$$

where f, g are representatives of [f] and [g] respectively. Then $||[f]||^2_{L^2(X)} = \langle [f], [f] \rangle$ and $L^2(X)$ becomes a complex Hilbert space.

Let K be a compact subset of \mathbb{R}^n . The space of complex-valued continuous functions on K and the space of complex valued Lebesgue square integrable functions are denoted by C(K) and $L^2(K)$ respectively. A continuous function on K is Lebesgue measurable. (They are Borel functions). Moreover, for any $f \in C(K)$, one has

(1.1)
$$\int_{K} |f(x)|^{2} dx \le ||f||_{\infty}^{2} \int_{K} 1 dx = |K| ||f||_{\infty}^{2},$$

where |K| is the Lebesgue measure of K. We find that f is also Lebesgue square integrable. Given $f \in C(K)$, we denote [f] its equivalent class in $L^2(K)$. We obtain a map

$$T: C(K) \to L^2(K), \quad f \mapsto [f].$$

T is obviously linear.

Definition 1.1. Let $T: X \to Y$ be a linear operators where X and Y are normed spaces. T is said to be bounded if there exists M > 0 such that

$$||Tx||_Y \le M||x||_X$$

for all $x \in X$.

By (1.1), $||T(f)||_{L^2(X)} \leq M||f||_{\infty}$, for all $f \in C(K)$, where $M = \sqrt{|K|}$ and hence $T: C(K) \to L^2(K)$ is a bounded linear operator. Moreover, if T(f) = T(g) for $f, g \in C(K)$, then f = g almost everywhere on K. Since both f and g are continuous on K and f = g almost everywhere on K, f must be equal to g. If not, assume $f(x_0) \neq g(x_0)$ for some $x_0 \in K$, then there exists an open ball $B(x_0, \delta)$ such that $f(x) \neq g(x)$ on $B(x_0, \delta)$. Since

 $B(x_0, \delta)$ has positive measure and $f \neq g$ on $B(x_0, \delta)$, we find that f is not equal to g almost everywhere. This leads to a contradiction to the assumption that f = g almost everywhere. This shows that $\ker T = \{0\}$. Let V = T(C(K)) be the image of C(K) under T. We obtain a linear isomorphism $T: C(K) \to V$. We identify C(K) with the linear subspace V of $L^2(K)$ via T. Hence we can think of C(K) as a vector subspace of $L^2(K)$. Similarly, for each $p \geq 1$, we can consider the space $L^p(K)$. We identify C(K) as a vector subspace of $L^p(K)$.