
1. A Remark on the space of continuous functions and Square integrable
functions

Let (X,Σ, µ) be a measure space and L2(X) be the set of all complex-valued Lebesgue
measurable functions on X such that∫

X
|f(x)|2dµ <∞.

The function L2(X) → R defined by f 7→ (
∫
X |f |

2dx)1/2 is not a norm on L2(X) because

there is a nonzero measurable function f such that
∫
X |f |

2dx = 0. We therefore consider an

equivalence relation on L2(X) defined as follows. We say that f is equivalent to g in L2(X)
if f = g almost everywhere. That is, there exists a measure zero set Z such that f = g on
X \Z. The quotient space of L2(X) modulo the relation is denoted by L2(X). The quotient
space is also a complex vector space: we define

[f ] + [g] = [f + g], a[f ] = [af ]

where [f ], [g] ∈ L2(X) and a ∈ C. We call L2(X) the space of square integrable functions
on X. Let [f ] be an equivalent class in L2(X). We define

‖[f ]‖2L2(X) =

∫
X
|f(x)|2dx

for a representative f in [f ]. This is a well-defined function on L2(X) and hence we can
verify that it gives a norm on L2(X). Moreever, if we set

〈[f ], [g]〉 =

∫
X
f(x)g(x)dµ,

where f, g are representatives of [f ] and [g] respectively. Then ‖[f ]‖2L2(X) = 〈[f ], [f ]〉 and

L2(X) becomes a complex Hilbert space.
Let K be a compact subset of Rn. The space of complex-valued continuous functions on

K and the space of complex valued Lebesgue square integrable functions are denoted by
C(K) and L2(K) respectively. A continuous function on K is Lebesgue measurable. (They
are Borel functions). Moreover, for any f ∈ C(K), one has

(1.1)

∫
K
|f(x)|2dx ≤ ‖f‖2∞

∫
K

1dx = |K|‖f‖2∞,

where |K| is the Lebesgue measure of K. We find that f is also Lebesgue square integrable.
Given f ∈ C(K), we denote [f ] its equivalent class in L2(K). We obtain a map

T : C(K)→ L2(K), f 7→ [f ].

T is obviously linear.

Definition 1.1. Let T : X → Y be a linear operators where X and Y are normed spaces.
T is said to be bounded if there exists M > 0 such that

‖Tx‖Y ≤M‖x‖X
for all x ∈ X.

By (1.1), ‖T (f)‖L2(X) ≤ M‖f‖∞, for all f ∈ C(K), where M =
√
|K| and hence

T : C(K)→ L2(K) is a bounded linear operator. Moreover, if T (f) = T (g) for f, g ∈ C(K),
then f = g almost everywhere on K. Since both f and g are continuous on K and f = g
almost everywhere on K, f must be equal to g. If not, assume f(x0) 6= g(x0) for some
x0 ∈ K, then there exists an open ball B(x0, δ) such that f(x) 6= g(x) on B(x0, δ). Since
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B(x0, δ) has positive measure and f 6= g on B(x0, δ), we find that f is not equal to g almost
everywhere. This leads to a contradiction to the assumption that f = g almost everywhere.
This shows that kerT = {0}. Let V = T (C(K)) be the image of C(K) under T. We obtain a
linear isomorphism T : C(K)→ V. We identify C(K) with the linear subspace V of L2(K)
via T. Hence we can think of C(K) as a vector subspace of L2(K). Similarly, for each p ≥ 1,
we can consider the space Lp(K). We identify C(K) as a vector subspace of Lp(K).


