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Abstract

The Floer homology was invented by A. Floer to solve the famous

Arnold conjecture, which gives the lower bound of the fixed points

of a Hamiltonian symplectomorphism.

Floer’s theory can be regarded as an infinite dimensional version

of Morse theory. The aim of this dissertation is to give an exposition

on Floer homology on symplectic manifolds. We will investigate the

similarities and differences between the classical Morse theory and

Floer’s theory. We will also explain the relation between the Floer

homology and the topology of the underlying manifold.
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Introduction 1

Introduction

In 1965 V. I. Arnold conjectured in [2] that a symplectic diffeo-

morphism of a compact symplectic manifold M onto itself possesses

at least as many fixed points as a smooth function on M has critical

points, whenever this diffeomorphism is homologous to the identity

(i.e. a Hamiltonian symplectomorphism). If we require the function

to have non-degenerate critical points, i.e. a Morse function, then

this number would be the sum of the Betti numbers of M , as is well-

known in classical Morse theory. Therefore it is natural to look for

a Morse-type theory to solve this version of Arnold’s conjecture. If

the diffeomorphism is sufficiently near to the identity this was solved

by Arnold [1] himself and also A. Weinstein [37]. Without this as-

sumption, there are some scattered results, like Conley-Zehnder [6]

for the 2n-torus case using variational approach and M. Gromov’s

[15] result of existence of at least one fixed point when π2(M) = 0,

using pseudo-holomorphic curves. The breakthrough came from

Floer’s approach of combining these two ideas in a series of papers,

notably [11], which proves the Arnold conjecture in the monotone

case. His method can be understood as an infinite dimensional ver-

sion of Morse theory, and is known as Floer homology now. The

later development can be regarded as the extension of his work. We

will outline his method under some additional assumptions on the
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second homotopy group of M .

In chapter 1, we introduce some materials of the classical Morse

theory, which is very similar to Floer’s theory in many ways. Of par-

ticular importance are the Morse homology theorem and the Morse

inequalities, which are used in the proof of the Arnold conjecture.

Readers familiar with classical Morse theory may skip this chapter

and proceed to chapter 2 directly, or they may start at section 1.2

instead to skim through Floer’s approach of Morse homology.

In chapter 2, we outline the background and the necessary tools

needed in the proof of Arnold’s conjecture and also the construction

of Floer homology groups. This chapter provides an overview of this

dissertation and should be read prior to chapter 3 and chapter 4.

In chapter 3, we present the basic knowledge of Fredholm the-

ory which is used to establish the manifold structure of the moduli

space of trajectory. We prove the index formula for a Fredholm

operator using Maslov index, which is often easier to calculate than

the Fredholm index. This gives the local dimension of the Moduli

space. The readers can skip the details without affecting their un-

derstanding of the whole picture if they are willing to accept some

of the technical results.

In chapter 4, we look at the construction of Floer homology

groups in a more detailed way. Two important techniques are the

gluing argument and the Gromov’s compactness theorem, which can
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often be combined together perfectly to give many of the impor-

tant results in this chapter. The success of Floer homology comes

when we relate it to the Morse homology of a (time-independent)

Morse-Smale function, which is obtained by transforming the time-

dependent Hamiltonian function to a nice Morse-Smale function by

a process known as Floer continuation. Of course the Morse ho-

mology groups are much well-understood, and we can extract infor-

mation about the fixed points from them. In particular the Arnold

conjecture follows as an easy corollary after proving that the Floer

homology groups are isomorphic to the singular homology groups

of M up to a shift of grading.

The remarks are usually some simple observations and notes.

They are of secondary importance.

I was invited to the wonderful world of Floer’s theory by my

advisor about one year ago and I would like to write some notes

about it in a way which (I hope) is elementary and down to earth.

However due to my lack of knowledge and time I find it impossible

to cover everything in detail even if I aim at writing only a very

tiny portion of this theory. Nevertheless I still hope these notes

are accessible by a graduate or undergraduate student with a basic

knowledge of differentiable manifolds and preferably some classical

Morse theory.



Chapter 1

Morse Theory

Floer homology can be understood as an infinite dimensional version

of the Morse theory. In fact many ideas in Floer homology are

analogous to that of the Morse homology. Especially the Morse

homology theorem and the Morse inequalities are useful in proving

the Arnold conjecture. It is therefore useful to look at the more

classical case of Morse theory first. Two good references are [4]

and [25], see also [34] for a more analytic approach which is closely

related to Floer’s theory.

1.1 Introduction

Definition 1.1. Let Mn be a smooth finite dimensional manifold.

Let f : M → R be a smooth function, then p ∈M is a critical point

of f if df(p) = 0. It is a Morse function if for any critical point

p, the Hessian Hf(p) of f at p is non-degenerate. Equivalently, in

4
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local coordinates, the determinant of the Hessian matrix at p given

by

Hf(p) = (
∂2f

∂xi∂xj
(p))

is nonzero, where x1, · · · , xn are the local coordinates around p.

We will denote the set of critical points of f by C(f).

Definition 1.2. Let f be a Morse function and p is a critical point

of f . Then the Morse index of f at p,

λ(p) = λ(p, f) := number of negative eigenvalues of Hf(p).

The following Morse lemma gives a nice local representation of

f near a critical point:

Lemma 1.3 (Morse lemma). Let f be a Morse function and p is a

critical point of f . Then there exists an open neighborhood U of p

and a chart h : U → Rn such that in this coordinates,

f ◦ h−1(x) = f(p) − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

n,

where k = λ(p).

Corollary 1.4. The critical points of a Morse function are isolated.

In particular, if M is compact, there are only finitely many critical

points.

Basically, one wants to study the global topology of a manifold

M through a Morse function by extracting the local information
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from the critical points of f . More precisely, define the sublevel set

Ma := {x ∈ M : f(x) ≤ a}, we would like to see the change in

topology (homotopy type) of these sublevel sets when the value of

f runs across a critical point. The following two theorems are useful

for us to understand these changes.

Theorem 1.5. If a < b and there is no critical value of f in [a, b],

then Ma and M b are diffeomorphic:

Ma ∼= M b.

Moreover, Ma is a deformation retract of M b, so the inclusion

Ma →֒M b is a homotopy equivalence.

Theorem 1.6. Suppose p is a critical point of f with Morse index

λ, f(p) = c and exists ε > 0 such that there is no other critical

point in f−1[c− ε, c+ ε] except p, then the homotopy type of M c+ε

is obtained by attaching a λ-cell eλ := {x ∈ Rλ : ||x|| ≤ 1} to M c−ε:

M c+ε ≈M c−ε ∪φ eλ

by an attaching map φ : ∂eλ → M c−ε, where ∂eλ is the boundary

of eλ. (Here ≈ means “homotopy equivalence”. ) In fact, there

is a subset e ⊂ M c+ε diffeomorphic to eλ such that M c−ε ∪ e is a

deformation retract of M c+ε.

More generally, if there are exactly k critical points p1, · · · pk ∈
f−1(c), λ(pi) = λi and ε > 0 is as above, then

M c+ε ≈M c−ε ∪φ1
eλ1

∪ · · · ∪φk
eλk
.
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Theorem 1.6 follows more or less from the Morse lemma, at least

when there is only one critical value between c − ε and c + ε. In-

tuitively, let U be a neighborhood of a critical point p as given by

the Morse lemma. The homotopy type of the sublevel set {x ∈ U :

f(x) ≤ a} in U changes only when the value of f runs across the

critical point c and by analyzing the sublevel sets, the change is

exactly given by attaching a λ-cell to M c−ε.

Choose a Riemannian metric g on M . The choice of the particular

metric is not very important as it turns out that Morse homology is

independent of the choice and “most” metric are good (satisfies the

Morse-Smale condition). Consider the flow ψt : M → M generated

by the negative gradient vector field of f :










d
dtψt(x) = −∇f(ψt(x))

ψ0 = id

(1.1)

Definition 1.7. Let p be a critical point of f , then the unstable

manifold of p is defined by

W u(p) := {x ∈M : lim
t→−∞

ψt(x) = p}

and the stable manifold of p is defined by

W s(p) := {x ∈M : lim
t→∞

ψt(x) = p}.

As the names suggest, W u(p) and W s(p) are indeed embedded

submanifolds of M ([19] corollary 6.3.1).
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Definition 1.8. A Morse function f is said to satisfy the Morse-

Smale condition if for any critical points p and q of f , W u(p) and

W s(q) intersect transversally. i.e. for every x ∈ W u(p) ∩W s(q),

TxW
u(p) + TxW

s(q) = TxM.

The flow in (1.1) is then called a Morse-Smale flow and (f, g)

is called a Morse-Smale pair.

Example 1.9. Let f : T 2 → R be the height function on the torus

T 2 (with induced metric g from R3) as shown in the figure (the

arrows denote the directions of the flow):

This function is not Morse-Smale. The unstable manifold of the

saddle point q coincides with the stable manifold of the saddle point

r. So at any point of intersection, the two tangent spaces do not

span the whole tangent space at that point. However, if we perturb

f (or g) a little, this phenomenon will disappear. In fact, W u(q) and

W s(r) will not even intersect. This can be thought of intuitively as

if we tilt the torus a little bit:
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In fact the Morse-Smale condition is “generic” (in the sense of

Baire).

Theorem 1.10 (Kupka-Smale). ([27], [36]) For a compact smooth

Riemannian manifold M , the set of smooth Morse-Smale gradient

vector fields is a generic subset of the set X of smooth gradient fields

on M .

Here a subset of X is “generic” means it contains a countable

intersection of open dense subset of X (in C∞ topology). As the

Riemannian metric gives a homeomorphism between the space of

gradient vector fields and the space of exact one-forms {df : f ∈
C∞(M,R)} ∼= C∞(M,R)/R on M , it implies that the set of Morse-

Smale functions is also a generic subset of C∞(M,R).

Definition 1.11. Let p, q be critical points of a Morse function f .

The space of trajectory M(p, q) = M(p, q; f, g) connecting p and
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q is defined as

M(p, q) := {u ∈ C∞(R,M) :
du

dt
= −∇f(u), lim

t→−∞
u(t) = p, lim

t→∞
u(t) = q}.

M(p, q) naturally embeds into M by

ι : u 7→ u(0).

Under this identification, we have the diffeomorphism ([34] propo-

sition 2.31)

ι : M(p, q) ∼= W u(p) ∩W s(q).

Theorem 1.12. Let (1.1) be Morse-Smale and p, q are critical

points of f . Then M(p, q) is a smooth manifold and

dimM(p, q) = λ(p) − λ(q).

There is a natural action of R on M(p, q) by (τ, u) 7→ u(τ + ·).
Suppose f(q) < a < f(p) and a is not a critical value of f , define

Ma(p, q) := ι(M(p, q)) ∩ f−1(a). Then by the implicit function

theorem and theorem 1.12, Ma(p, q) is a smooth submanifold of

M of dimension λ(p) − λ(q) − 1. It is easy to show the following

proposition.

Proposition 1.13. The map

Ψa : R ×Ma(p, q) → M(p, q)

(τ, x) 7→ u(τ + ·)

is a R-equivariant diffeomorphism, where u(0) = x and R acts by

translation on the first factor of R ×Ma(p, q).
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Definition 1.14. Define the space of unparametrized trajec-

tory

M̂(p, q) := M(p, q)/R.

We will say u ∈ M(p, q) is a parametrized trajectory and its

image û ∈ M̂(p, q) an unparametrized trajectory if it is necessary

to distinguish these two. By proposition 1.13, we have a diffeomor-

phism

Ψa : M̂(p, q) = M(p, q)/R
∼=→ Ma(p, q).

So in particular M̂(p, q) is also a smooth manifold and

dimM̂(p, q) = λ(p) − λ(q) − 1.

1.2 Morse Homology

In this section we assume that M is compact and let (1.1) be a

Morse-Smale flow on M . We will outline the construction of Morse

homology. We do this not only because some of its results are used

in Floer’s proof of Arnold conjecture, but also because it is very

similar to the construction of Floer homology, only simpler. A de-

tailed account can be found in [34] and also [30]. As we will see,

many of the arguments here will be carried out again in chapter 4.

For simplicity we will work with Z2 coefficient, so we can ignore the

problem of orientation.

When λ(p) − λ(q) = 1, M̂(p, q) is zero-dimensional, we would like
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to count the number of points in it. Therefore we have to know that

M̂(p, q) is compact. First we need the notion of a n-dimensional

smooth manifold with corners, which is a second countable Haus-

dorff space such that each point has a neighborhood with a home-

omorphism with Rn−k × [0,∞)k for some 0 ≤ k ≤ n, and such that

the transition maps are smooth. This generalizes the concept of a

manifold with boundary and for n ≤ 1 they are the same. Now

recall C(f) is defined to be the set of critical points of f . We have

the following compactness result.

Proposition 1.15. Suppose p, q ∈ C(f). Then M̂(p, q) has a nat-

ural compactification to a smooth manifold with corners M̂(p, q) by

adjoining all the order k broken (unparametrized) trajectories:

⋃

p0,p1,··· ,pk+1∈C(f)

M̂(p0, p1) × M̂(p1, p2) × · · · × M̂(pk, pk+1),

where p0 = p, pk+1 = q and all pi’s are distinct. This is called the

compactification by broken trajectories.

The proof has two parts. One is a compactness result, which

states that any sequence ûn ∈ M̂(p, q) has a convergence subse-

quence that converges in an appropriate sense (see theorem 4.3)

towards some broken trajectories of order k. The second part is

a “gluing argument” which asserts that any order k parametrized

broken trajectories can by “glued” together (with a gluing param-

eter in [R,∞)k) to form a trajectory in M(p, q) (see theorem 4.9).
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For example, an order one broken trajectories (called simply broken

trajectories) is a pair (u, v), where u ∈ M(p, q) and v ∈ M(q, r),

they can be “glued” together at q to get u#ρv ∈ M(p, r) for suffi-

ciently large ρ, and u#ρv will converge to (u, v) as ρ→ ∞ in some

appropriate sense.

Figure 1.1: Convergence and gluing of simply broken trajectories.

These two arguments can be regarded as the converse of each other.

The important consequence of proposition 1.15 is that when λ(p)−
λ(q) = 1, then zero-dimensional M̂(p, q) is compact since there is

no broken trajectories to be added for compactification, i.e. it is

finite. So at last we are able to make the following definition.

Definition 1.16. For p, q ∈ C(f) and λ(p) − λ(q) = 1,

〈∂p, q〉 := #M̂(p, q) (mod2).

Denote Ck := spanZ2
{p ∈ C(f) : λ(p) = k}. Then the boundary
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operator

∂k : Ck → Ck−1

is defined by

∂kp :=
∑

q∈Ck−1

〈∂p, q〉q

where p ∈ Ck. The Morse-Smale-Witten chain complex, or

just the Morse complex, is defined as (C∗, ∂∗).

Proposition 1.17. The boundary operators satisfy

∂k ◦ ∂k+1 = 0.

Proof. Let p ∈ Ck+1, this statement is equivalent to

∑

r∈Ck

∑

q∈Ck−1

〈∂p, r〉〈∂r, q〉q = 0 (mod 2).

So fixing p ∈ Ck+1, q ∈ Ck−1, we have to prove

∑

r∈Ck

〈∂p, r〉〈∂r, q〉 = #
⋃

r∈Ck

M̂(p, r) × M̂(r, q) (1.2)

is an even number.

This is proved by the following observation. Each component of

the 1-dimensional compact manifold with boundary M̂(p, q) which

is not a circle must be a closed bounded interval (having two end-

points) by the classification theorem. By proposition 1.15, each end-

point of these intervals is of the form of (û, v̂) ∈ M̂(p, r) × M̂(r, q)

for some r ∈ Ck.
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Since there must be an even number of such endpoints in M̂(p, q),

it follows that the number in (1.2) is an even number.

Definition 1.18. Define the k-th Morse homology group of

(M ; f, g)

HMk(M ; f, g) := ker ∂k/im ∂k+1.

Example 1.19. Let f : S1 → R be the height function given by the

following figure (g can be any metric):

There are four critical points. The critical points p, q are of index

1 and the critical points r, s are of index 0.

∂p = ∂q = r + s and ∂r = ∂s = 0.
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Therefore

HM1(S
1; f, g) = 〈p+ q〉Z2

∼= Z2

and

HM0(S
1; f, g) = 〈r, s〉Z2

/〈r + s〉Z2

∼= 〈r〉Z2

∼= Z2.

This agrees with the singular homology H∗(S1) of S1. Although this

example is simple, this is not an incident.

Let (f0, g0), (f1, g1) be two Morse-Smale pairs. It is a remarkable

fact that the Morse homology groupsHM∗(M ; f0, g0) andHM∗(M ; f1, g1)

are in fact isomorphic. One approach is to identify each of these

Morse homology groups to the singular homology groups of M (see

theorem 1.24). However Floer found an elegant alternative approach

which establish a more natural isomorphism betweenHM∗(M ; f0, g0)

and HM∗(M ; f1, g1), through a process he called continuation, with-

out invoking the singular homology of M . The following explicit

construction is from [18].

Let (C i
∗, ∂

i) be the Morse complexes of (fi, gi), i = 0, 1. The idea is

that we can continuously transform (f0, g0) to (f1, g1) by a smooth

homotopy (ft, gt), t ∈ [0, 1], where gt is a Riemannian metric on

M for all t. (Note that the space of all Riemannian metrics on M

is contractible. ) We then define a vector field V = V (t, x) on

[0, 1]×M by

V (t, x) := (1 − t)t(1 + t)
∂

∂t
− gradtft
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where gradtft is the (time-dependent) gradient vector field of ft :

M → R with respect to the metric gt on M . Note that the (1 −
t)t(1+ t) ∂∂t is the negative gradient of the function (t+1)2(t−1)2/4

on R. It is chosen because this function has a critical point of index

1 at t = 0 and a critical point of index 0 at t = 1 with no critical

point in between. Actually this V is the negative gradient vector

field of the function (t+ 1)2(t− 1)2/4 + ft(x) on [0, 1] ×M , where

the metric at the point (t, x) is given by the first fundamental form




1 0

0 I(t, x)



, I(t, x) being the first fundamental form of gt at x .

We can define its critical points, stable and unstable manifolds and

flow lines just as the case of gradient flow onM before. As before we

also require the stable and unstable manifold to intersect each other

transversely. If (f0, g0) and (f1, g1) are Morse-Smale then a generic

homotopy between them satisfies this condition. Such homotopy is

called admissible. However for such homotopy, it may (and often

must) happen that for some time t 6= 0, 1, the pair (ft, gt) is not

Morse-Smale on M .

Observe that for t = 0, 1, the flow on [0, 1] ×M is the same as the

flow on M of (f0, g0) and (f1, g1) respectively. Note also that there

are only two kinds of critical points of V , one is of the form (0, p)

where p ∈ C0
∗ and the other is of the form (1, q) where q ∈ C1

∗ . Also

the index of (0, p) is 1 + λ(p, f0) and the index of (1, q) is λ(q, f1).

Thus M̂((0, p), (1, q)) is zero-dimensional if λ(p, f0) = λ(q, f1) = k
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and is compact. We then define φ : C0
k → C1

k by

φ(p) :=
∑

q∈C1
k

〈φp, q〉q

where 〈φp, q〉 := #M̂((0, p), (1, q)) (mod 2), i.e. the number of

unparametrized trajectories in [0, 1]×M connecting (0, p) and (1, q)

modulo two.

Proposition 1.20. φ is a chain map. i.e.

∂1 ◦ φ = φ ◦ ∂0.

Proof. The proof is similar to that of 1.17. Denote M̂i(p, q) :=

M̂(p, q; fi, gi) for i = 0, 1. M̂i(p, q) can be naturally identified with

M̂((i, p), (i, q)). Let p ∈ C0
k+1 and q ∈ C1

k , we have to show

∑

r∈C0
k

〈∂0p, r〉〈φr, q〉 =
∑

s∈C1
k+1

〈φp, s〉〈∂1s, q〉. (mod 2) (1.3)

Equivalently, there is an even number of pairs of unparametrized

simply broken trajectories between p and q. By proposition 1.15,

there are two kinds of endpoints of the one-dimensional compact

manifold M̂((0, p), (1, q)). One kind is in the form of (û, v̂) ∈
M̂0(p, r) × M̂((0, r), (1, q)), where r ∈ C0

k . This corresponds to

the term on the left of equation (1.3), the other kind of endpoint

is of the type (ŵ, r̂) ∈ M̂((0, p), (1, s)) × M̂1(s, q) with s ∈ C1
k+1,

which corresponds to the right hand side of (1.3). Since there must

be an even number of endpoints, the result follows.
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Proposition 1.21. Suppose (f 0
t , g

0
t ) and (f 1

t , g
1
t ) are two smooth

homotopies between (f0, g0) and (f1, g1) as above, and φ0, φ1 respec-

tively denotes their induced chain maps. Then φ0 and φ1 are chain

homotopic, i.e. there exists Ψ = Ψk : C0
k → C1

k+1 such that

φ0 − φ1 = ∂1 ◦ Ψ + Ψ ◦ ∂0.

Sketch of proof. Again the proof is similar to that of proposition

1.17. First find a smooth λ-homotopy (fλt , g
λ
t ) between (f 0

t , g
0
t )

and (f 1
t , g

1
t ), λ ∈ [0, 1], such that (fλi , g

λ
i ) = (fi, gi) for all λ and

i = 0, 1. Then (fλt , g
λ
t ) can be regarded as a family {(fd, gd) :

d ∈ D} parametrized by the 2-gon D := [0, 1] × [0, 1]/{(0, λ1) ∼
(0, λ2) and (1, λ1) ∼ (1, λ2)}.

Again we find a function h : D → R with an index two critical point

at the vertex v0 := {0} × [0, 1] and an index 0 critical point at the

vertex v1 := {1}× [0, 1] with no other critical point and the negative
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gradient −∇h(d) of h at the two edges are (1− t)t(1 + t) ∂∂t . Define

the vector field V = V (d, x) on D ×M by

V = −∇h− graddfd

where graddfd is the gradient vector field of fd with respect to the

metric gd. For a generic choice of (fd, gd), V is Morse-Smale. The

only critical points of V on D×M are of the type (v0, p) with index

λ(p, f0) + 2 where p ∈ C0
k and (v1, q) with index λ(q, f1) where

q ∈ C1
k . Define Ψ : C0

k → C1
k+1 by

Ψp :=
∑

q∈Ck+1

#M̂((v0, p), (v1, q))q.

By analyzing the endpoints of the one-dimensional manifold M̂((v0, p)(v1, r))

for p ∈ C0
k , r ∈ C1

k , we get the result.

Proposition 1.21 shows that there exists a homomorphism of the

Morse homology groups

φ∗ : HM∗(M ; f0, g0) → HM∗(M ; f1, g1).

If γ1 is a homotopy from (f0, g0) to (f1, g1) as above, we denote the

induced chain map by φγ1
. Let γ2 be a homotopy from (f1, g1)

to (f2, g2). Then we can concatenate the two paths, which by

reparametrizing and perturbing it if necessary, can be assumed to

be a smooth admissible homotopy from (f0, g0) to (f2, g2), call it

γ2 ∗ γ1.



Chapter 1. Morse Theory 21

Proposition 1.22. φγ2∗γ1
and φγ2

◦ φγ1
are chain homotopic.

This is again proved by the compactness-gluing argument and

is omitted here. For a constant homotopy from (f, g) to itself, the

induced homomorphism of homology is obviously the identity. For

two pairs (f0, g0) and (f1, g1) and any homotopy γ = (ft, gt) between

them, since the inverse homotopy compose with it is homotopic is

identity, therefore by the previous proposition each such φγ∗ is an

isomorphism. Therefore

Theorem 1.23. For two Morse-Smale pairs (f0, g0) and (f1, g1) on

M , the corresponding Morse homology groups are isomorphic

HM∗(M ; f0, g0) ∼= HM∗(M ; f1, g1).

So we can speak of “the” Morse homology of M without actually

specifying a particular Morse-Smale pair. Furthermore, it is actually

the same as singular homology of M .

Theorem 1.24 (Morse homology theorem). The Morse homology

is isomorphic to the singular homology of M

HMk(M ; f, g) ∼= Hk(M ; Z2).

There are many proofs, see for example [12], [30], [38]. One

idea is to relate the singular homology of M with that of a CW

complex. We can build a CW complex Kwhose k-cells corresponds

to the critical points of f with Morse index k as follows. Since
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M is compact there exists c0 < · · · < cl such that ci’s are all the

critical values of f . Suppose a is not a critical value with ck−1 <

a < ck and that Ma has the homotopy type of a CW complex, that

is Ma is homotopy equivalent to a CW complex K. By theorem

1.5 and 1.6, M ck+ε is homotopy equivalent to Ma ∪φ1
eλ1

∪ · · · ∪φj

eλj
where λ1, · · · , λj are exactly the indices of the j critical points

corresponding to ck. Then M ck is homotopy equivalent to K ∪ψ1

eλ1
∪ · · · ∪ψj

eλj
for some gluing maps ψi : ∂eλi

→ K. (See [25]).

Ma is empty if a < c0 and by induction Ma has the homotopy type

of a CW complex. Let a0, · · · , al are such that c0 < a0 < c1 < · · · <
cl < al, then there is a sequence of homotopy equivalences

Ma0 ⊂ Ma1 ⊂ · · · ⊂ M l = M

↓ ↓ ↓
K0 ⊂ K1 ⊂ · · · ⊂ Kl = K

each extending the previous one. So M is homotopy equivalent to

the CW complex K. Then the singular homology of M is isomor-

phic to the cellular homology of K. Both the CW complex and the

Morse complex are generated by the critical points of f graded by

the indices, furthermore it can be proved that the boundary oper-

ator of the CW complex and that of the Morse complex are the

same (after identification). Intuitively, it is because the “attaching

degree” of a k-cell relative to a (k − 1)-cell is equal to the number

of components of the intersection between the unstable manifold



Chapter 1. Morse Theory 23

of the corresponding index-k critical point and the stable manifold

of the corresponding critical point with index k − 1 (mod 2). The

following is a corollary of the Morse homology theorem.

Theorem 1.25 (Weak Morse inequalities). Let Mn be a compact

manifold. Let ck denotes the number of critical points of index k of

f and bk := dimHk(M,Q) denotes the k-th Betti number. Then

bk ≤ ck and

χ(M) =
n

∑

k=0

(−1)kbk =
n

∑

k=0

(−1)kck.

In particular the number of critical points of f is bounded below by

the sum of the Betti numbers:

#C(f) =

n
∑

k=0

ck ≥
n

∑

k=0

bk.

We also have the stronger inequalities.

Theorem 1.26 (Morse inequalities). For a compact manifold,

bk−bk−1+· · ·+(−1)kb0 ≤ ck−ck−1+· · ·+(−1)kc0 for all k = 0, · · · , n

For the proof, see for example [25].



Chapter 2

Symplectic Fixed Points and

Arnold Conjecture

2.1 Introduction

Let (M2n, ω) be a connected 2n-dimensional compact symplectic

manifold without boundary, i.e. ω is a closed non-degenerate 2-

form on M . Then ω determines an isomorphism Iω : T ∗M
∼=−→ TM ,

namely for α ∈ T ∗
pM , α 7→ v, where v ∈ TpM is the unique vector

satisfying α = ωp(v, ·). Let H = H(t, x) : R × M → R be a

smooth function on M , called a Hamiltonian function, such that

it is periodic in time (periodic means 1-periodic unless otherwise

stated):

H(t, x) = H(t+ 1, x).

Then Ht = H(t, ·) can be regarded as a time dependent periodic

family of function on M . The image of the one form −dHt under Iω,

24
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denoted by Xt, is called the Hamiltonian vector field generated

by Ht. That is,

−dHt = ω(Xt, ·).

Consider the Hamiltonian system of ordinary differential equations

ẋ(t) = Xt(x(t)). (2.1)

The solutions for (2.1) generates a flow ψt : M →M :










d
dtψt = Xt(ψt)

ψ0 = id

Let ψ = ψ1 be the time 1 map. Clearly, the fixed points of ψ

corresponds to the periodic solutions to (2.1).

Definition 2.1. Define

P (H) := {periodic solutions of (2.1)}.

As the solutions are periodic, we can also define it as P (H) := {x :

R/Z →M | x solves (2.1)}.

By identifying x with x(0), sometimes we will use x to denote

either a periodic solution of (2.1) or a fixed point of ψ. We will also

identify R/Z with S1 throughout.

Remark 2.2. For all t, ψt is a symplectomorphism, i.e. ψ∗
tω = ω,

as ψ∗
0ω = ω and by Cartan’s formula,

d

dt
ψ∗
tω = ψ∗

t (LXt
ω) = ψ∗

t (dιXt
ω+ιXt

dω) = ψ∗
t (dιXt

ω) = ψ∗
t (−ddHt) = 0,
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where LXt
denotes the Lie derivative along Xt. A symplectomor-

phism generated by a Hamiltonian vector field is called a Hamilto-

nian or exact symplectomorphism.

Definition 2.3. A fixed point x is called non-degenerate if

det(I − dψ(x(0))) 6= 0.

i.e. 1 is not an eigenvalue of dψ(x(0)). H is said to be regular if

all its corresponding fixed points are non-degenerate.

Arnold conjectured that the number of non-degenerate periodic

solutions to this equation is at least the sum of the Betti numbers

of M .

Conjecture 2.4 (Arnold conjecture). Suppose all the periodic so-

lutions of (2.1) are non-degenerate. Then

#P (H) ≥
2n

∑

i=0

bi

where bi = dimHi(M,Q) is the i-th Betti number of M .

Remark 2.5. 1. A fixed point x can be identified with the point

(x, x)at the intersection of the graph Γ := {(x, ψ(x)) : x ∈ M}
of ψ with the diagonal ∆ := {(x, x) : x ∈ M} in M × M .

Then x is non-degenerate if and only if Γ intersects with ∆
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transversely at (x, x):

T(x,x)(M ×M) = T(x,x)Γ + T(x,x)∆

= T(x,x)Γ ⊕ T(x,x)∆ (i.e. T(x,x)Γ ∩ T(x,x)∆ = 0)

= {(v, dψx(v)) : v ∈ TxM} ⊕ {(v, v) : v ∈ TxM}

⇔ dψx(v) 6= v for non-zero v ∈ TxM . i.e. x is non-degenerate.

2. Non-degenerate x ∈ P (H) are isolated: by choosing a suitable

local coordinates, we can regard ψ : R2n → R2n such that x has

local coordinates 0 and so ψ(0) = 0. Then d(ψ − id)(0) has

non-zero determinant and thus ψ− id is a local diffeomorphism

around 0 by inverse mapping theorem. So locally ψ(x) 6= x

except x = 0. Therefore for compact M , P (H) consists of

finite number of points.

Remark 2.6. 1. Since ψ is isotopic to the identity map, by the

Lefschetz fixed point theorem, the number of fixed points of ψ

is greater than or equal to |
2n

∑

i=0

(−1)ibi|. So Arnold conjecture

gives a stronger estimate in this case.

2. The comparison of Lefschetz fixed point theorem with Arnold

conjecture is analogous to that of Poincare-Hopf theorem, which

states that for a smooth vector field V onM with non-degenerate

zeroes,

#{x ∈M : V (x) = 0} ≥ |
2n

∑

i=0

(−1)ibi|,
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with Morse theory, which states that for a gradient vector field

∇f induced by f (by giving M a Riemannian metric),

#{x ∈M : ∇f(x) = 0} = #{x ∈M : df(x) = 0} ≥
2n

∑

i=0

bi.

The last inequality comes from theorem 1.25, the weak Morse

inequality. Actually the original statement of Arnold is that

every Hamiltonian symplectomorphism on M has at least as

many fixed points as a function on M has critical points (see

[1], [2]), this is clear in particular when H is a time indepen-

dent Morse function:

3. For the special case where Ht ≡ H, i.e. H is independent of t.

Then

x is a critical point of H ⇔ dH(x) = 0

⇔ XH(x) = 0

⇔ x(t) ≡ x ∈ P (H).

In particular if H is a Morse function, then #P (H) ≥
2n

∑

i=0

bi.

The Arnold conjecture of the above form has now been proved in

full generality. Floer ([7], [8], [9], [12]) invented the Floer homology

for the monotone case, which is the analogue of Morse homology

on finite dimensional smooth manifolds, by studying the “gradient

flow” of a certain action functional on the loop space of M . There is
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also another version of Arnold conjecture for degenerate fixed points

(see [16], [10]).

2.2 The Variational Approach

According to classical Morse theory, the existence problem of closed

geodesics is restated by the variational approach as the existence of

the critical points (which are by definition loops in M) of the energy

functional E

E(x) :=

∫

S1

|ẋ|2dt

for x : S1 → M in some appropriate loop space of M . One then is

naturally led to apply the same method to study the critical points

of the action functional associated to a Hamiltonian system:

A(x) = −
∫

D

u∗ω +

∫

S1

Ht(x(t))dt (2.2)

where u|∂D = x : S1 →M .

A natural inner product structure is introduced on the appropriate

loop space so as to define the gradient of A. Then the zeroes of

the gradient of A, i.e. its critical points can be identified to the

solutions of the Hamiltonian equation (2.1).

However the classical Morse theory approach fails in this infinite

dimensional setting due to several reasons.

Unlike the energy functional, the action functional is both unbounded

above and below, so there is no absolute minimum or maximum
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which we can start a Morse complex for cellular decomposition.

Moreover, the “Morse index” would not be finite as in the classical

cases, as the subspaces on which the Hessian is positive or negative

definite are both infinite dimensional. Finally the gradient of the

action functional grad A defined above does not give a well-defined

flow on the loop space we considered.

However there is still hope. Floer realized that the essential con-

ditions for Morse theory is still satisfied if we reduce it to the rel-

ative gradient flow, that is a flow between two fixed critical points

x and y of A. We also use a relative Morse index which, roughly

speaking, measures the codimension of the “unstable manifold” of

y with respect to the “unstable manifold” of x. Floer found the

right analytical setup to analyze the space M(x, y). He then used

the structures of these spaces to extract an invariant which is now

called Floer homology.

2.3 Action Functional and Moduli Space

Definition 2.7. The contractible loop space L of M is defined

to be all the contractible loops in M . i.e. L := {x ∈ C∞(R/Z,M) |
x is contractible}.

Denote D := {z ∈ C : |z| ≤ 1} to be the closed unit disk.

So for x ∈ L, there exists an extension u : D → M such that

u(ei2πt) = x(t).



Chapter 2. Symplectic Fixed Points and Arnold Conjecture 31

We will assume throughout that ω vanish over the second homotopy

group π2(M) of M . i.e.
∫

S2

v∗ω = 0 (2.3)

for any smooth v : S2 → M , noting that this integral depend only

on the homotopy class of v. This assumption is needed for the well-

definedness of the action functional on M and is also crucial for the

compactness of the so called moduli space. A symplecic manifold

with this condition is called aspherical and we will denote this

condition as ω(π2(M)) = 0.

Definition 2.8. The action functional A = AH : L → R is

defined by

AH(x) := −
∫

D

u∗ω +

∫ 1

0

Ht(x(t))dt,

where u : D →M is an extension of x to the unit disk.

Remark 2.9. A is well defined by the following reason. Suppose

u1, u2 both extends x, then we can “glue” the two maps along their

boundary to get a map from S2 to M . More precisely, let S2 ⊂ R3 be

the unit sphere and let π : (x, y, z) 7→ (x, y) by the projection onto

the x− y plane. Define v : S2 →M by

v(p) =







u1(π(p)) if p is on the upper hemisphere,

u2(π(p)) if p is on the lower hemisphere.

Then v is a well defined continuous map and
∫

S2 u
∗
1ω − u∗2ω =

∫

S2 v
∗ω = 0. Therefore A is a well defined function.
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It turns out that Arnold conjecture is easier to prove in the so

called monotone case. Here we will make an even stronger assump-

tion. Let J be an almost complex structure which is compatible

with ω, i.e. J ∈ C∞(End(TM)), J2 = −I and

g(ξ, η) = 〈ξ, η〉 := ω(ξ, Jη), ξ, η ∈ TxM, (2.4)

defines a Riemannian metric on M . Then by the symmetry of g,

both ω and g are J-invariant, i.e. 〈Jξ, Jη〉 = 〈ξ, η〉 and ω(Jξ, Jη) =

ω(ξ, η). Such J exists in abundance and in fact the space J of all

compatible almost complex structures of M is contractible (see for

example [23]). Then (TM, J) is a complex vector bundle over M

with first Chern class c1 = c1(TM, J) ∈ H2(M,Z). c1 is indepen-

dent of the choice of J as we can join two such complex structures

J1, J2 by a path and thus induce an isomorphism between (TM, J1)

and (TM, J2) as complex vector bundle.

We will assume throughout, as in (2.3), that c1 vanishes on π2(M):

∫

S2

v∗c1 = 0 (2.5)

for any v : S2 → M . This assumption, denoted by c1(π2(M)) = 0,

is needed to give a well-defined Maslov type index for the critical
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point of A and thus a grading of the Floer homology groups. Let

us state again our assumptions.

Assumption 2.10. We will assume throughout that both ω and c1

vanishes on π2(M):
∫

S2

v∗ω = 0 and

∫

S2

v∗c1 = 0

for any v ∈ C∞(S2,M).

Remark 2.11. 1. Floer [11] actually proved the Arnold conjec-

ture in the more general case where M is monotone. This

means
∫

S2

v∗c1 = c

∫

S2

v∗ω

for any v : S2 → M , where c is a positive constant. The

weakly monotone case was proved by Hofer-Salamon [17] and

Ono [26]. The general case was proved by Fukaya-Ono [14],

Liu-Tian [21] and Ruan [29].

2. In the monotone case, by rescaling ω if necessary,
∫

S2 v
∗ω ∈ Z

for any v : S1 → M . The argument in remark 2.9 shows that

A is a well defined circle-valued function.

L is a very large space and is not a finite dimensional manifold

(except when M is a point). For x ∈ L, we define a “tangent vector”

ξ to be a vector field on x, i.e. ξ(t) ∈ Tx(t)M . In other words, ξ is a

section of the induced bundle x∗TM . Fix ξ, let ys = y(s, ·) be a one-

parameter variation of contractible loop such that ∂y
∂s(0, t) = ξ(t)
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and y(0, t) = x(t). Explicitly, we can choose y(s, t) = expx(t)(s · ξ)
(M is a compact Riemannian manifold once J is chosen). Let u :

D →M be an extension of x in the sense that u(ei2πt) = x(t). Note

that we can extend y(s, ·) by the “gluing” map y|S1×[0,s]#u for each

s.

Then

dA(x)ξ =
d

ds

∣

∣

∣

∣

s=0

(−
∫

D

u∗ω −
∫ s

0

∫ 1

0

y∗ω +

∫ 1

0

Ht(y(s, t))dt)

=
d

ds

∣

∣

∣

∣

s=0

(

∫ s

0

∫ 1

0

ω(
∂y

∂t
,
∂y

∂s
)dt ds+

∫ 1

0

Ht(y(s, t))dt)

=

∫ 1

0

(ω(
dx

dt
, ξ) + dHt(ξ))dt.

Therefore dA(x) = 0 ⇔ ω(ẋ, ·) = −dHt. i.e. ẋ(t) = Xt(x(t)).

So critical points of the action functional correspond to the con-

tractible periodic solutions to the Hamiltonian equation. Define

J := {ω-compatible almost complex structure on M}

and let J ∈ J . Let g be the induced Riemannian metric. Let

ξ, η ∈ TxL, so ξ(t), η(t) ∈ Tx(t)M . We define a Riemannian metric
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on L by

〈ξ, η〉 :=

∫ 1

0

g(ξ(t), η(t))dt.

Then

〈grad A, ξ〉 = dA(ξ)

=

∫ 1

0

(ω(ẋ, ξ) + dHt(ξ))dt

=

∫ 1

0

(ω(Jẋ, Jξ) + 〈∇Ht, ξ〉)dt (∇ is the gradient w.r.t. g)

=

∫ 1

0

〈Jẋ+ ∇Ht, ξ〉dt.

So

grad A(x)(t) = Jẋ(t) + ∇Ht(x(t)). (2.6)

A negative gradient flow line of A is u : R → L, s 7→ us(·) such that

du

ds
= −grad A(us).

By the above calculations, regarding u = u(s, t) := us(t) : R ×
(R/Z) →M , u is given by the partial differential equation

∂u

∂s
= −J ∂u

∂t
−∇Ht(u)

i.e.
∂u

∂s
+ J(u)

∂u

∂t
+ ∇H(t, u) = 0. (2.7)

We denote the left hand side of the above equation by

∂(u) = ∂H,J(u) :=
∂u

∂s
+ J(u)

∂u

∂t
+ ∇H(t, u).
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Remark 2.12. 1. The equation (2.7) can also be written as

∂u

∂s
+ J(

∂u

∂t
−Xt) = 0.

This is because J∇Ht = Xt as −dHt = 〈−∇Ht, ·〉 = ω(−∇Ht, J ·) =

ω(J∇Ht, ·) = ω(Xt, ·).

2. If u(s, t) ≡ x(t) satisfying (2.7) is independent of s, then x(t)

is a critical point of A as grad A(x) = −∂u
∂s = 0, thus it is a

periodic solution for (2.1).

If Ht ≡ constant, then (2.7) becomes

∂u

∂s
+ J

∂u

∂t
= 0,

that means u is a J-holomorphic curve. (A J-holomorphic

curve is a map u from a Riemann surface (Σ, i) to an almost

complex manifold (M,J) such that J ◦ du = du ◦ i, see [15])

3. Finally if H(t, x) = H(x) is independent of t, then for those

solutions u = u(s) to (2.7) which is also independent of t sat-

isfies

du

ds
= −∇H(u). (2.8)

i.e. it satisfies the gradient flow equation for H. This observa-

tion will be useful to relate the Morse homology with the Floer

homology as we will see later in this section (see also section

4.5).
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We are going to apply Morse-type theory to study the gradient

flow line of A and more importantly, understand how the behavior

of the critical points of A relates with the topology of M . However

there are some problems preventing us from directly applying the

classical Morse theory to the action functional.

In finite dimensional Morse theory, every gradient flow line of a

Morse function f on a compact manifold M “begins” and “ends” at

a critical point. More precisely, if γ(t) is a gradient flow line then

lim
t→±∞

γ(t) exists and the two limits are both critical points. However

this is not true for the symplectic Floer theory. Actually this is true

only when u is bounded.

Definition 2.13. Let u ∈ C∞(R × S1,M). The energy of u is

defined by

E(u) :=
1

2

∫ 1

0

∫ ∞

−∞
(

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂u

∂t
−Xt(u)

∣

∣

∣

∣

2

)ds dt.

u is said to be bounded if E(u) <∞.

Theorem 2.14. Suppose u = u(s, t) ∈ C∞(R × (R/Z),M) is a

contractible solution of (2.7). Then E(u) < ∞ if and only if there

exists x± ∈ P (H) such that

lim
s→±∞

u(s, t) = x±(t), (2.9)

the limits being uniform in t.
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Figure 2.1: Flow line of symplectic action.

Proof. We prove “⇐”. For u satisfying (2.9),

E(u) =
1

2

∫ 1

0

∫ ∞

−∞
(

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂u

∂t
−Xt(u)

∣

∣

∣

∣

2

)ds dt

=
1

2

∫ ∞

−∞

∫ 1

0

(

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

J
∂u

∂t
+ ∇Ht(u)

∣

∣

∣

∣

2

)dt ds

=

∫ ∞

−∞

∫ 1

0

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

dt ds

=

∫ ∞

−∞

∣

∣

∣

∣

∣

∣

∣

∣

du

ds

∣

∣

∣

∣

∣

∣

∣

∣

2

ds where || · || is the norm in L

=

∫ ∞

−∞
〈du
ds
,−grad A〉ds

=

∫ ∞

−∞

d

ds
(−A(us))ds

= A(x−) −A(x+) <∞. (2.10)

We will prove the converse in theorem 4.2.

Suppose u solves (2.7) andE(u) <∞, then u is called a bounded

solution of (2.7) and denote the space of all bounded solutions of

(2.7) by M. Given x± ∈ P (H), we also define
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Definition 2.15. The moduli space of bounded solutions

M(x−, x+) = M(x−, x+;H, J)

:= {u ∈ C∞(R × S1,M) | u solves (2.7) and lim
s→±∞

u(s, t) = x±(t)}

= {u ∈ C∞(R × S1,M) | ∂(u) = 0 and lim
s→±∞

u(s, t) = x±(t)}.

In view of theorem 2.14, it is clear that

M =
⋃

x,y∈P (H)

M(x, y).

Theorem 2.14 suggests that suggests that instead of considering the

flow of A on the loop space L, one should look at the space of

bounded energy solutions of its gradient flow equation.

Remark 2.16. If u ∈ M(x−, x+) with E(u) = 0, then ∂u
∂s ≡ 0 and

so u = u(t) satisfies du
dt = Xt(u), therefore u(t) = x−(t) = x+(t) ∈

P (H). In particular if x− 6= x+ and M(x−, x+) 6= φ then the proof

of theorem 2.14 shows that A(x−) > A(x+). This is analogous to

the fact in classical Morse theory that the value of a Morse function

f on M decreases strictly along a non-constant gradient flow line.

Remark 2.17. M(x−, x+) minimizes E among all curves with bound-
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ary conditions (2.9), this follows from

E(u) =
1

2

∫ ∞

−∞

∫ 1

0

(

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

J
∂u

∂t
+ ∇H

∣

∣

∣

∣

2

)dt ds

=
1

2

∫ ∞

−∞

∫ 1

0

(

∣

∣

∣

∣

∂u

∂s
+ J

∂u

∂t
+ ∇H

∣

∣

∣

∣

2

− 2〈∂u
∂s
, J
∂u

∂t
+ ∇H〉)dt ds

=
1

2

∫ ∞

−∞

∫ 1

0

∣

∣

∣

∣

∂u

∂s
+ J

∂u

∂t
+ ∇H

∣

∣

∣

∣

2

dt ds+

∫ ∞

−∞
〈du
ds
,−grad A ◦ u〉)ds

=
1

2

∫ ∞

−∞

∫ 1

0

∣

∣

∣

∣

∂u

∂s
+ J

∂u

∂t
+ ∇H

∣

∣

∣

∣

2

dt ds+A(x−) − A(x+).

There is a natural R-action on M(x−, x+) given by r · u(s, t) =

u(r+s, t) for r ∈ R. Define the moduli space of unparametrized

bounded solutions

M̂(x−, x+) := M(x−, x+)/R.

We study M(x, y;H, J) locally by linearizing ∂ at u ∈ M(x, y)

to get a differential operator F (u). More precisely, differentiating

equation (2.7) in the direction of a vector field ξ ∈ C∞(u∗TM) on

u leads to the first order linear differential operator F (u) = D∂(u):

F (u)ξ = ∇sξ + J(u)∇tξ + (∇ξJ(u))
∂u

∂t
+ ∇ξ∇Ht(u)

where ∇ denotes the covariant derivative with respect to the Rie-

mannian metric given by (2.4). It turns out that if x, y are non-

degenerate then F (u) is a Fredholm operator with a finite index

between two appropriate Sobolev spaces. We want to smoothly ex-

tend ∂ as a section of a Banach bundle over a Banach manifold, so

that M(x−, x+) is the zero section of ∂ and argue that 0 is a regular
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value of ∂ if we choose a suitable J . After this has been done we

can apply implicit function theorem to conclude that M(x−, x+) is

a smooth manifold with the dimension near u given by the index of

F (u).

Definition 2.18. (H, J) is called a regular pair if

1. All contractible x ∈ P (H) are non-degenerate, and

2. If x± ∈ P (H) are contractible and u ∈ M(x−, x+), then F (u)

is surjective.

Due to an infinite dimensional version of Sard’s theorem by Smale

[35] (see also [13], [33] for the details), we have a transversality

result:

Proposition 2.19. There is a dense subset of smooth almost com-

plex structure Jreg ⊂ C∞(End(TM)) such that for all J ∈ Jreg and

u ∈ M, F (u) is onto, i.e. (H, J) is regular.

So by implicit function theorem and by choosing a regular pair,

we have

Theorem 2.20. For a regular pair (H, J), M(x−, x+;H, J) is a fi-

nite dimensional smooth manifold for x± ∈ P (H) and the dimension

of M(x−, x+) is given by the index:

dimM(x−, x+) = indexF (u).
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We will see that indexF (u) can be in turn calculated by the

difference of a Maslov-type index µ:

indexF (u) = µ(x−) − µ(x+).

The Maslov index µ : P (H) → Z associates an integer to every

contractible periodic solution x ∈ P (H) of (2.1). The Maslov index

will play the role of grading the Floer homology groups just like the

Morse index does in Morse homology.

2.4 Construction of Floer Homology

It follows from the manifold structure of M(x,− , x+) and a compactness-

gluing argument using the Gromov’s compactness theorem [15] that

we have the following theorem.

Proposition 2.21. Suppose (H, J) is regular, x± ∈ P (H) such that

µ(x−) − µ(x+) = 1. Then M̂(x−, x+) is a compact 0-dimensional

manifold, i.e. it consists of finite number of points. In other words

the set of connecting trajectories (modulo shifting) between x− and

x+ is finite.

This result is used to construct the boundary operator in Floer

homology. The so called compactness-gluing argument is very useful

and it is used repeatedly to prove several results as we will see in

chapter 4. Let (H, J) be a fixed regular pair. For simplicity, we

work with Z2 coefficient only.
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Definition 2.22. Define the k-th Floer chain complex as the

vector space over Z2 generated by the periodic solution x ∈ P (H) of

(2.1) with Maslov index k

Ck := spanZ2
{x ∈ P (H) : µ(x) = k}.

If µ(x) − µ(y) = 1, define

〈∂x, y〉 := #M̂(x, y) (mod 2).

The boundary operator ∂k : Ck → Ck−1 is defined as

∂kx :=
∑

y∈Ck−1

〈∂x, y〉y for x ∈ Ck

and extends it linearly. (C∗, ∂∗) is called the Floer chain complex.

By analyzing an appropriate moduli space using the compactness-

gluing argument again, Floer proved the following in the monotone

case, establishing the existence of Floer homology:

Theorem 2.23 (Floer [11]).

∂k ◦ ∂k+1 = 0.

Definition 2.24. Define the Floer homology groups of the pair

(H, J) on (M,ω)

HFk(M ;H, J) := ker ∂k/im ∂k+1.

It is remarkable that these homology groups turn out to be in-

dependent of the choice of the pair (H, J). One important theorem

is
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Theorem 2.25 (Floer continuation [11]). Suppose (Hα, Jα), (Hβ, Jβ)

are two regular pairs on M . Then there exists a natural isomorphism

φβα : HF∗(M ;Hα, Jα) → HF∗(M ;Hβ, Jβ).

Furthermore, if (Hγ, Jγ) is another regular pair, then

φαβ ◦ φβγ = φαγ and φαα = id.

With the observation that if H(t, x) = H(x) is independent of t,

then the gradient flow line u = u(s) of H:

du

ds
= −∇H(u). (2.11)

actually solves the P.D.E. (2.7). This makes a relation to Morse

theory. In fact we can find a sufficiently C2 small Morse function H

independent of t and an almost complex structure J ∈ J such that

(H, J) is regular and every bounded solution u of (2.7) is indepen-

dent of t. Then in this case all x ∈ P (H) are exactly the critical

points of H, furthermore the Maslov index of x ∈ P (H) agrees with

the Morse index of x regarded as a critical point up to a shifting of

n, so the Floer’s complex of (H, J) agrees with the Morse complex

of the gradient flow (2.11). Therefore

HFk(M ;H, J) ∼= HMn+k(M ;H, J).

Note that until now we can deduce something about the existence of

periodic solutions to (2.1). Finally by the Morse homology theorem
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(theorem 1.24) the Morse homology is isomorphic to the singular

homology of M :

HMk(M ;H, J) ∼= Hk(M ; Z2).

So combining all these we have

Theorem 2.26 (Floer[11]). The Floer homology is isomorphic to

the singular homology of M up to a shift of grading:

HFk(M ;H, J) ∼= Hk+n(M ; Z2), −n ≤ k ≤ n.

In particular by the weak Morse inequalities (theorem 1.25),

Floer [11] proved the Arnold conjecture as a corollary.

Theorem 2.27 (Arnold conjecture). If all the periodic solutions to

(2.1) are non-degenerate, then

#P (H) ≥
2n

∑

i=0

bi.



Chapter 3

Fredholm Theory

We would like to study the moduli space M(x−, x+), which turns

out to be a smooth finite dimensional manifold for a generic choice

of the pair (H, J). This space can be analyzed locally by covariant

differentiating equation (2.7) in the direction of a smooth vector

field ξ ∈ C∞(u∗TM) on u ∈ M(x−, x+). This leads to the first

order linear differential operator F (u) = D∂(u):

F (u)ξ = ∇sξ + J(u)∇tξ + (∇ξJ(u))
∂u

∂t
+ ∇ξ∇Ht(u) (3.1)

where ∇ denotes the covariant derivative with respect to the metric

induced by some almost complex structure J ∈ J . This operator

in turn is studied by Fredholm theory. However, in order to use

Fredholm theory, we cannot work only on the space C∞(u∗TM) of

smooth sections of u∗TM as this space is not a Banach space. We

need to find an alternative functional setting.

There are several goals to achieve in this chapter. Firstly we have

46
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to find the right analytical setup: we want to regard ∂ as a section

of a Banach bundle over a certain Banach manifold, so that we can

identify M(x−, x+) as the zero of this section. Secondly we want to

show that ∂ is Fredholm by linearizing it at u ∈ M(x−, x+) (we can

differentiate ∂ at u without specifying a connection because u is a

zero of this section) and prove that the linearized operator F (u) is

a linear Fredholm operator, the surjectivity of F (u) means that the

section ∂ intersects with the zero section transversely. After this

has been done, we can then apply the implicit function theorem for

Banach manifolds to show that M(x−, x+) is a finite dimensional

smooth manifold if in addition, 0 is a regular value of ∂. This not

always true, but is true for a generic choice of H and J , as we will

see in the chapter 4. In addition to proving ∂ is Fredholm, we also

get a formula for the index of ∂ in terms of the Maslov index of x±,

so that we can calculate the dimension of M(x−, x+) by calculating

the Maslov index of x±, i.e. it depends on its endpoints only.

3.1 Fredholm Operator

Definition 3.1. Let X, Y be Banach spaces. A bounded linear

operator F : X → Y is a Fredholm operator if it has a finite

dimensional kernel and cokernel and it has a closed range.

The (Fredholm) index of F is defined by

indexF := dimkerF − dim cokerF = dimkerF − codim R(F )
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where R(F ) denotes the range of F .

The set of Fredholm operators F (X, Y ) from X to Y in open

in the set L(X, Y ) of bounded linear operators with norm topology.

The index is continuous on F (X, Y ). Furthermore, Fredholm opera-

tor and its index is stable under compact perturbation. This means

that if F : X → Y is Fredholm and K : X → Y is a compact linear

operator, then F+K is also Fredholm and index (F+K) = indexF .

The nonlinear extension of the above notion fits in the context of

smooth manifolds, or Banach manifolds, which can be regarded as

a smooth manifold in which each point has a neighborhood diffeo-

morphic to an open set in a Banach space, which can be infinite

dimensional (see [20]). Let M , N be two connected manifolds. A

C1 map f : M → N is Fredholm if for each x ∈ M , the differen-

tial df(x) : TxM → Tf(x)N is Fredholm. The Fredholm index of f

is defined as the index of df(s). Since df is continuous and M is

connected the index is independent of x by the above remark.

3.2 The Linearized Operator

It was Floer who found the appropriate functional setting to set up

his theory of Floer homology.

Let x± ∈ P (H) be a pair of non-degenerate solutions of (2.1) and
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u : R × S1 →M be smooth such that

lim
s→±∞

u(s, t) = x±(t), (3.2)

lim
s→±∞

∂u

∂t
= ẋ±(t) and lim

s→±∞
∂u

∂s
= 0 (3.3)

where all limits are uniform in t. For such u, and for a smooth

compactly supported vector field ξ ∈ C∞(u∗TM), i.e. ξ(s, t) ∈
Tu(s,t)M , the Lp norm of ξ is given by

||ξ||Lp = (

∫ ∞

−∞

∫ 1

0

|ξ(s, t)|pdt ds) 1

p .

We define the Hilbert space Lp(u∗TM) as the completion of all

smooth compactly supported vector fields on u∗TM with respect to

this norm. We also define

W 1,p(u∗TM) := {ξ ∈ Lp(u∗TM) | ∇sξ,∇tξ ∈ Lp(u∗TM)}

where ∇sξ, ∇tξ denotes the covariant derivative of ξ with respect

to s and t respectively in the weak sense. Now let ξ ∈ W 1,p(u∗TM)

and define exp ξ : R × S1 →M by exp ξ(s, t) := expu(s,t) ξ(s, t).

Define

P1,p = P1,p(x−, x+)

:= {exp ξ | u ∈ C∞(R × S1,M) with (3.2), (3.3), ξ ∈ W 1,p(u∗TM)}.

Then it can be proved that P1,p is a Banach manifold with tangent

space (see [34])

TP1,p =
⋃

u∈P1,p

W 1,p(u∗TM).
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This is a Banach bundle on P1,p with characteristic fiber W 1,p(R ×
S1,R2n). Analogously we define the Banach bundle

Lp(P1,p∗TM) :=
⋃

u∈P1,p

Lp(u∗TM)

over P1,p with characteristic fiber Lp(R × S1,R2n). Then in this

setting we can extend ∂ as a smooth section ∂ : P1,p → Lp(P1,p)

from P1,p into the bundle Lp(P1,p) for p > 2. For u ∈ P1,p with

∂(u) = 0, the linear differential operator F (u) : W 1,p(u∗TM) →
Lp(u∗TM) defined by

F (u)ξ := ∇sξ + J(u)∇tξ + (∇ξJ(u))
∂u

∂t
+ ∇ξ∇Ht(u) (3.4)

can be viewed as the differential of ∂ at u ∈ P1,p. We will show that

F (u) is Fredholm.

3.3 Maslov Index

Recall that the group of 2n× 2n symplectic matrices Sp(2n,R) :=

{A ∈M(2n,R) : ATJ0A = J0}, where

J0 =





0 I

−I 0





and I ∈ M(n,R) is the n × n identity matrix. There is a natural

embedding of the unitary group U(n) into Sp(2n,R), namely ι :

U(n) → Sp(2n,R) given by

ι : X + iY 7→





X −Y
Y X



 .
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This embedding is in fact a group homomorphism and we identify

U(n) with its image in Sp(2n,R). Salamon and Zehnder showed

that there is a natural continuous extension ρ of the determinant

map det : U(n) → S1 with some natural properties. However this

is no longer a homomorphism. The general setting is as follows.

Let V be a finite dimensional real symplectic vector space. That

means V is equipped with a non-degenerate skew-symmetric bilinear

form ω : V ×V → R. Let Sp(V, ω) = {A ∈ L(V ) : A∗ω = ω}. Then

Proposition 3.2 ([5], [32]). For each (V, ω) as above, there is a

unique continuous map ρ = ρV : Sp(V, ω) → S1 satisfying the fol-

lowing conditions:

1. (Naturality). If T : (V1, ω1) → (V2, ω2) is a symplectic isomor-

phism and A ∈ Sp(2n,R), then ρ(TAT−1) = ρ(A).

2. (Product). If (V, ω) = (V1 ⊕ V2, ω1 ⊕ ω2), then ρ(A1 ⊕ A2) =

ρ(A1)ρ(A2) where A1⊕A2 ∈ Sp(V, ω) is given by A1⊕A2(z1, z2) =

(A1z1, A2z2), Ai ∈ Sp(Vi, ωi), zi ∈ Vi.

3. (Determinant). If A ∈ Sp(2n,R)∩U(n) is given by A = ι(X+

iY ), then ρ(A) = det(X + iY ).

4. (Normalization). If A has no eigenvalue of the form eiθ ∈ S1,

then ρ(A) = ±1.

Note that we do not differentiate different ρ when the domain of
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definition is clear. We now turn into the Maslov index for symplectic

paths.

Definition 3.3. LP∗ := {Ψ : [0, 1] → Sp(2n,R) : Ψ(0) = I, det(I−
Ψ(1)) 6= 0}. Such paths are called non-degenerate paths.

For a curve Ψ : [0, 1] → Sp(2n,R), there exists a lifting α :

[0, 1] → R such that ρ ◦ Ψ(t) = eiπα(t), define ∆(Ψ) := α(1) − α(0),

clearly this is independent of the choice of α.

Definition 3.4. Sp∗ = Sp(2n,R)∗ := {A ∈ Sp(2n,R) : det(A −
I) 6= 0)}.

Lemma 3.5 ([33]). Sp∗ has two path-connected components

Sp± = Sp(2n,R)± := {A ∈ Sp(2n,R) : ± det(A− I) > 0}.

Moreover, every loop in Sp∗ is contractible in Sp(2n,R).

Let W+ = −I and W− = diag(2,−1, · · · ,−1, 1/2,−1, · · · ,−1).

It can be proved thatW± ∈ Sp±. By the above lemma, for Ψ ∈ LP∗

so that A := Ψ(1) ∈ Sp∗, there exists Ψ̄ : [0, 1] → Sp∗ such that

Ψ̄(0) = A, Ψ̄(1) ∈ {W+,W−}.
By lemma 3.5, for fixed A ∈ Sp∗, ∆(Ψ̄) is independent of choice of

Ψ̄, for if we choose two such paths Ψ̄1, Ψ̄2, then they are homotopic

in Sp(2n,R) relative to their endpoints and thus can be lifted to R

with the same endpoints.
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Definition 3.6. For Ψ ∈ LP∗, the Maslov index of Ψ is defined

by

µ(Ψ) := ∆(Ψ) + ∆(Ψ̄).

Proposition 3.7.

1. µ(Ψ) ∈ Z.

2. µ(Ψ0) = µ(Ψ1) ⇔ Ψ0 and Ψ1 are homotopic in LP∗.

3. Suppose Ψ(t) = exp(J0St) where S = ST ∈ M(2n,R) is a

non-singular symmetric real matrix with norm |S| < 2π. Then

Ψ ∈ LP∗ and

µ(Ψ) = λ(S) − n

where λ(S) denotes the number of negative eigenvalues of S

counted with multiplicity.

Proof. We will prove (3). Choose a path Pτ ∈ SO(2n) such that

P0 = I and S1 := P T
1 SP is a diagonal matrix, τ ∈ [0, 1]. Then

Sτ := P T
τ SPτ is a symmetric path joining S = S0 to a diagonal

matrix D and λ(Sτ) is independent of τ .

Now for |S| = |D| < 2π, we have |J0Dx| ≤ |D||x| < 2π|x| for x 6=
0 ⇒ 2πi is not an eigenvalue of J0D.

Then σ(exp(J0Sτ )) = σ(exp(J0D)) = {eµ : µ ∈ σ(J0D)} ⇒ 1 /∈
σ(exp(J0Sτ )). This implies Ψτ ∈ LP∗ for all τ where Ψτ (t) :=

exp(J0Sτ t).
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So we can assume S is diagonal. Without loss of generality we

assume that

S = diag(ε, · · · , ε,−ε, · · · ,−ε)

where 0 < ε < 2π and there are k = λ(S) many −ε’s.
Decompose S into 2× 2 blocks, with each block equals to one of the

following:

S0 =





ε 0

0 ε



 , S1 =





ε 0

0 −ε



 , S2 =





−ε 0

0 −ε



 .

These are the case in (iii) for n = 1.

exp(J0S0t) =





cos(εt) sin(εt)

− sin(εt) cos(εt)



 = ι(e−iεt).

By the determinant property in proposition 3.2, ρ(exp(J0S0t)) =

e−iεt. Since 0 < ε < 2π, µ(Ψ) = −1 = λ(S0) − 1 in this case.

Similarly, for S = S1, µ(Ψ) = 0 = λ(S) − 1 and µ(Ψ) = 1 for

S = S2. All together, this implies

µ(Ψ) = λ(S) − n

in general.

Proposition 3.8. Let x̄ : D → M be smooth. Then there exists a

(unitary) trivialization Φ : D × R2n → x̄∗TM : (z, ξ) 7→ Φ(z)ξ such

that

ΦJ0 = JΦ, ω(Φξ,Φη) = ω0(ξ, η) and g(Φξ,Φη) = ξTη



Chapter 3. Fredholm Theory 55

where J0, ω0 are the standard almost complex structure and the stan-

dard symplectic structure in R2n respectively. Two such trivializa-

tions are homotopic.

Proof. Since D is contractible, by choosing a complex trivialization

of x̄∗TM as complex vector bundle and applying Gram-Schmidt pro-

cess, we obtain a smooth complex orthonormal frames {v1, · · · , vn}
on x̄∗TM . Then define Φ(ei) = vi, Φ(en+i) = Jvi for i = 1, · · · , n.

Suppose now Φ1,Φ2 are two such trivializations. Then Φ−1
2 Φ1 :

D → U(n) is homotopic to the constant map z 7→ I as U(n) is path

connected. This shows that Φ1 and Φ2 are homotopic.

Let x ∈ C∞(S1,M) be a contractible solution to (2.1):

ẋ = Xt(x)

so that there exists x̄ : D → M with x̄(ei2πt) = x(t). Then by

proposition 3.8, there exists a symplectic orthogonal trivialization

of x̄∗TM , which induces

Φ(t) = Φ(t+ 1) : R2n → Tx(t)M

a trivialization of x∗TM .

Lemma 3.9. If c1(π2(M)) = 0 (assumption (2.5)), then the trivial-

ization Φ is independent of the choice of the extension x̄ : D →M .

Proof. Suppose x̄, x̄′ : D → M satisfies x̄(ei2πt) = x̄′(ei2πt) = x(t)

which induces the two trivializations Φ,Φ′ of x̄∗TM and x̄′∗TM
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respectively. By a small perturbation (slight “thickening” of the

disk) if necessary we can assume that

x̄(reiθ) = x̄(eiθ),Φ(reiθ) = Φ(eiθ)

for 1 − ε ≤ r ≤ 1, and similarly for Φ′ and x̄′.

The map u : S2 = C ∪ {∞} →M defined by

u(z) =







Φ(z) if |z| ≤ 1

Φ′(1/z̄) if |z| ≥ 1

is smooth. As c1(u) = 0 the Cn bundle u∗TM is trivial. Hence there

exists a symplectic orthogonal trivialization Θ : S2 ×R2n → u∗TM .

Hence by proposition 3.8, the two trivializations Φ(t) and Φ′(t) are

both homotopic to Θ(ei2πt).

Let Φ : [0, 1]× R2n → x∗TM be a symplectic orthogonal trivial-

ization of x∗TM , i.e. Φt = Φ(t) : R2n
∼=→ Tx(t)M for t ∈ [0, 1]. Recall

that ψt is the flow of Xt. Define the path

Ψ(t) := Φ−1
t dψt(x0)Φ0, t ∈ [0, 1] (3.5)

where dψt(x0) denotes the differential map of ψt at the point x0 =

x(0). Then Ψ(t) is a path into Sp(2n,R) because Ψ(t)∗ω0 = Φ∗
0ψ

∗
t (Φ

−1
t )∗ω0 =

ω0. Also, Ψ(0) = I and Ψ(1) ∈ Sp∗ by the non-degenerate condi-

tion, i.e. Ψ ∈ LP∗, clearly this condition depends on dψt only and

is independent of the choice of Φ.
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Definition 3.10. For a contractible periodic solution x ∈ P (H) of

(2.1), define the Maslov index of x by

µ(x) := µ(Ψ).

Remark 3.11. If we choose two trivializations Φ,Φ′, by proposition

3.8, they are homotopic and so induces homotopic paths Ψ,Ψ′ ∈
LP∗ , by proposition 3.7, Ψ and Ψ′ have the same Maslov index.

Therefore µ(x) is independent of choice of Φ and hence Ψ.

3.4 Fredholm Index

Definition 3.12. Let ξ : R× (R/Z) = R×S1 → R2n be a map. The

Lp norm of ξ is defined to be

||ξ||Lp = ||ξ||Lp(R×S1,R2n) := (

∫ ∞

−∞

∫ 1

0

|ξ|pdt ds) 1

p .

Define

Lp(R × S1,R2n) := {ξ : R × S1 → R2n | ||ξ||Lp <∞}

and

W 1,p(R×S1,R2n) := {ξ ∈ Lp(R×S1,R2n) | ∂ξ
∂s
,
∂ξ

∂t
∈ Lp(R×S1,R2n)}

where the derivatives are understood to be in the weak sense. The

W 1,p norm of ξ ∈ W 1,p(R × S1,R2n) is defined to be

||ξ||W 1,p = ||ξ||W 1,p(R×S1,R2n) := (||ξ||pLp +

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂s

∣

∣

∣

∣

∣

∣

∣

∣

p

Lp

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

p

Lp

)
1

p .
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Consider for p ≥ 2, the operator F : W 1,p(R×S1,R2n) → Lp(R×
S1,R2n) defined by

Fξ :=
∂ξ

∂s
+ J0

∂ξ

∂t
+ Sξ, (3.6)

where ST = S = S(s, t) ∈ M(2n,R) is a continuous matrix valued

function on R × S1 such that

S± := lim
s→±∞

S(s, t)

exists with uniform convergence in t. When S = 0, F is called the

Cauchy-Riemann operator. This operator is considered because we

will show (see the proof of theorem 3.16) that by applying a pertur-

bation (which does not affect the Fredholm property) if necessary,

the operator F (u) in (3.1) is of this form after a trivialization.

There is a one-one correspondence between S and Ψ(s, t) ∈ Sp(2n,R)

defined by the differential equation










∂Ψ
∂t = J0SΨ,

Ψ(s, 0) = I2n×2n.

(3.7)

Ψ(s, t) ∈ Sp(2n,R) as for fixed s,

d

dt
(ΨTJ0Ψ) = ΨTSTJT0 J0Ψ + ΨTJ0J0SΨ = 0

and Ψ(s, 0) ∈ Sp(2n,R) for all s. It turns out that Ψ converges

uniformly in t as s→ ±∞. Denote

Ψ±(t) := lim
s→±∞

Ψ(s, t).
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Proposition 3.13 ([33] theorem 4.1). If Ψ± ∈ LP∗, then

1. F is a Fredholm operator, and

2. indexF = µ(Ψ−) − µ(Ψ+).

The proof uses the following lemma (see for example [24], [34]).

Lemma 3.14. Let X, Y, Z be Banach spaces, F : X → Y is a

bounded linear operator and K : X → Z is compact. Suppose there

exists c > 0 such that for all ξ ∈ X,

||ξ||X ≤ c(||Fξ||Y + ||Kξ||Z).

Then F has a closed range and its kernel is finite dimensional. F

with this property is said to be semi-Fredholm.

The Fredholm property of F is easiest to prove for p = 2, which

will be done here. For p > 2, see [31]. We will assume p = 2 from

now on.

Proof of Proposition 3.13 (1). Let X := R × (R/Z) = R × S1. The

proof of (1) consists of four steps.

Step 1.

Suppose S(s, t) = S(t), Ψ(s, t) = Ψ(t) are both independent of s.

We claim that there exists c > 0 such that

||ξ||W 1,2(X) ≤ c||Fξ||L2(X).
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Define the symmetric operator A : W 1,2(S1,R2n) → L2(S1,R2n) by

Aξ(t) = J0
dξ

dt
+ S(t)ξ(t).

Then

kerA 6= 0 ⇔ ∃ξ(t) 6= 0, Aξ = 0

⇔ ξ(t) = Ψ(t)ξ(0) by uniqueness of solution to (3.7)

⇔ Ψ(1)ξ(0) = ξ(0) 6= 0 i.e. 1 ∈ σ(Ψ(1))

⇔ Ψ /∈ LP∗. (3.8)

Therefore A is invertible onto its range and so exists c0 > 0 such

that

||ξ||W 1,2(S1) ≤ c0||Aξ||L2(S1).

Identify Cn with R2n and consider the Fourier transform F : L2(R×
S1,R2n) → L2(R × S1,R2n) defined by

(Fξ)(ω, t) :=
1√
2π

∫ ∞

−∞
exp(−iωs)ξ(s, t)ds.

Then F is an isometry. Also denote Fξ by ξ̂. Then F(∂ξ∂s) = iωξ̂

and so

F(
∂ξ

∂s
+ Aξ) = iωξ̂ + Aξ̂. (3.9)

So now

||ξ||2W 1,2(X) =

∫ ∞

−∞
(

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(S1)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂s

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(S1)

+ ||ξ||2L2(S1))ds

=

∫ ∞

−∞
(

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ̂

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(S1)

+ ||iωξ̂||2L2(S1) + ||ξ̂||2L2(S1))dω

=

∫ ∞

−∞
(||ξ̂||W 1,2(S1) + ω2 ||ξ||2L2(S1))dω. (3.10)
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Consider

||ξ̂||W 1,2(S1) ≤ c0||Aξ̂||L2(S1) ≤ c0||Aξ̂ + iωξ̂||L2(S1) (3.11)

for ω ∈ R as A is symmetric and ||Aξ̂ + iωξ̂||2L2(S1) = ||Aξ̂||2L2(S1) +

ω2||ξ̂||2L2(S1). Also,

|ω| · ||ξ̂||2L2(S1) ≤ ||〈ξ̂, iωξ̂ +Aξ̂〉||L2(S1)

≤ ||ξ̂||L2(S1)||iωξ̂ +Aξ̂||L2(S1)

⇒ |ω| · ||ξ̂||L2(S1) ≤ ||iωξ̂ + Aξ̂||L2(S1). (3.12)

So by (3.11) and (3.12), (3.10) becomes

||ξ||2W 1,2(X) ≤ (c20+1)

∫ ∞

−∞
||Aξ̂+iωξ̂||L2(S1)dω = c||Fξ||2L2(X) by (3.9)

where c = c(S).

Step 2.

For general S and hence F , we claim that there exists sufficiently

large T > 0, c = c(T ) > 0 such that for all ξ ∈ W 1,2(X,R2n,) with

ξ|[−T,T ] = 0, then

||ξ||W 1,2(X) ≤ c||Fξ||L2(X).

By step 1, there exists c± such that

||ξ||W 1,2(X) ≤ c±||F±ξ||L2(X)

for the limit operators F±ξ = ∂ξ
∂s + J0

∂ξ
∂t + S±ξ.

Let c = max(c+, c−) and let ε > 0. Then there exists T > 0 such
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that for all t,










|S(s, t) − S−(t)| < ε for s ≤ −T,

|S(s, t) − S+(t)| < ε for s ≥ T.

For ξ|[−T,T ] = 0, ξ = ξ− + ξ+ where











ξ−|[−T,∞] = 0,

ξ+|[−∞,T ] = 0.

||F±ξ±||L2(X) ≤ ||(F± − F )ξ±||L2(X) + ||Fξ±||L2(X)

≤ ε||ξ±||L2(X) + ||Fξ±||L2(X) as F± − F = S±

∴ ||ξ||W 1,2(X) = ||ξ−||W 1,2(X) + ||ξ+||W 1,2(X)

≤ c(||F−ξ−||L2(X) + ||F+ξ+||L2(X))

≤ c(||Fξ−||L2(X) + ||Fξ+||L2(X) + ε(||ξ−||L2(X) + ||ξ+||L2(X)))

= c(||Fξ||L2(X) + ε||ξ||L2(X))

≤ c(||Fξ||L2(X) + ε||ξ||W 1,2(X))

∴ (1 − cε)||ξ||W 1,2(X) ≤ c||Fξ||L2(X).

Take ε < 1/c and for the corresponding T = T (ε), then if ξ|[−T,T ] =

0,

||ξ||W 1,2(X) ≤
c

1 − cε
||Fξ||L2(X) = c′||Fξ||L2(X).

Step 3.

Claim: there exists c > 0, a Banach space Z, a compact operator

K : X → Z such that

‖|ξ||W 1,2(X) ≤ c(||Fξ||L2(X) + ||Kξ||Z). (3.13)
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This estimate shows that F is semi-Fredholm by lemma 3.14. Now

let T = T (S) be given by step 2. Let ξ ∈ W 1,2(X,R2n) with support

in [−T, T ]× S1. Denote XT := [−T, T ]× S1. Then in this case
∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂s

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(X)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(X)

=

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(X)

. (3.14)

To see this it suffices to assume n = 1, so ξ = (f, g) and

L.H.S. = R.H.S.+ 2

∫

R

∫

S1

(
∂f

∂s

∂g

∂t
− ∂g

∂s

∂f

∂t
)dt ds.

Integration by parts gives
∫

R

∫

S1

∂g

∂s

∂f

∂t
dt ds = −

∫

R

∫

S1

f
∂2g

∂s∂t
dt ds.

On the other hand, by integrating in s first and applying by parts,

since f = 0 for s > T ,
∫

S1

∫

R

∂f

∂s

∂g

∂t
ds dt = −

∫

R

∫

S1

f
∂2g

∂s∂t
dt ds.

From
∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t
+ 2Sξ

∣

∣

∣

∣

2

≥ 0,

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t

∣

∣

∣

∣

2

+ 〈∂ξ
∂s

+ J0
∂ξ

∂t
, Sξ〉 + |Sξ|2 ≥ 1

2

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t

∣

∣

∣

∣

2

− |Sξ|2 .

So
∫

X

|Fξ|2ds dt =

∫

XT

(

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t
+ Sξ

∣

∣

∣

∣

2

)ds dt

≥
∫

XT

(
1

2

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t

∣

∣

∣

∣

2

− |Sξ|2)ds dt

≥ 1

2

∫

XT

(

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t

∣

∣

∣

∣

2

− c̃ |ξ|2)ds dt



Chapter 3. Fredholm Theory 64

where c̃ = sup
XT

|S(s, t)|. Hence

||ξ||2W 1,2(X) =

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ

∂s
+ J0

∂ξ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(X)

+ ||ξ||2L2(X) by (3.14)

≤ (c̃− 1) ||ξ||2 + 2 ||Fξ||2 .

⇒ ||ξ||W 1,2(X) ≤ c(||ξ||L2(X) + ||Fξ||L2(X)). (3.15)

Now let β ∈ C∞(R, [0, 1]) be a cutoff function such that

β(s) =











1 for |s| ≤ T − 1,

0 for |s| ≥ T.

Then

||F (βξ)||L2(X) = ||β(
∂ξ

∂s
+ J0

∂ξ

∂t
+ Sξ) + β̇ξ||L2(X)

≤ ||Fξ||L2(X) + c||ξ||L2(XT ) for some c > 0. (3.16)

Similarly,

||F ((1 − β)ξ)||L2(X) ≤ ||Fξ||L2(X) + c||ξ||L2(XT ) for some c > 0.

(3.17)

By Rellich compact embedding, the following composition is a com-

pact operator,

K : W 1,2(X,R2n)
restriction−→ W 1,2(XT ,R

2n)
compact→֒ L2(XT ,R

2n)

Kξ := ξ|XT
.
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Therefore

||ξ||W 1,2(X)

≤||βξ||W 1,2(X) + ||(1 − β)ξ||W 1,2(X)

≤c1(||βξ||L2(X) + ||F (βξ)||L2(X)) + c2||F ((1 − β)ξ)||L2(X) by step 2 and (3.15)

≤c(||Fξ||L2(X) + ||Kξ||Z) by (3.16), (3.17)

Step 4.

We have shown F has finite dimensional kernel and has a closed

range. So the cokernel of F satisfies the isomorphism

cokerF ∼= R(F )⊥ ∼= kerF ∗.

Observe that the adjoint operator F ∗ is given by

F ∗ξ = −∂ξ
∂s

+ J0
∂ξ

∂t
+ Sξ.

The previous steps can be carried out for F ∗ and so kerF ∗ and hence

cokerF is also finite dimensional. This shows that F is Fredholm.

For the proof of the second part of proposition 3.13, we have

to study the so called spectral flow of a family of operators. But

first of all we have the following lemma which allows us to consider

particular nice kind of Fredholm operator as in (3.6) given by some S

which is easier to analyze. Suppose now we have another symmetric

family of matrices S̃(s, t) as before with

lim
s→±∞

S̃(s, t) = S±(t).
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Then by proposition 3.13, F̃ := ∂
∂s + J0

∂
∂t + S̃ is clearly also Fred-

holm. Denote the space of Fredholm operator from W 1,2(X,R2n) to

L2(X,R2n) by F . Proposition 3.13 tells us that the operator of the

form FS := ∂
∂s + J0

∂
∂t + S ∈ F . Define Σ := {F = FS ∈ F} all the

Fredholm operators of this form. We define FS̃ to be equivalent to

FS if

lim
s→±∞

S̃ = S± = lim
s→±∞

S

and denote by ΘS the equivalence class of FS in Σ. Then

Lemma 3.15. ΘS is contractible within Σ as a subspace in F .

Proof. Take any FS0
∈ Σ and let Θ = ΘS0

. Define the homotopy to

be

H : [0, 1]× Θ → Θ by (τ, FS) 7→ F(1−τ)S0+τS.

For all τ ∈ [0, 1], F(1−τ)S0+τS ∈ Θ as lim
s→±∞

(1−τ)S0+τS = lim
s→±∞

S0 =

S±
0 . It is also easy to check that it is continuous.

The significance of the above lemma is that the index map µ :

Σ → Z is constant when restricted to the equivalence class ΘS. In

other words, µ(FS) depends only on the endpoints S± of S. Now

consider a continuous family of operator

A(s) : W 1,2(R/Z,R2n) → L2(R/Z,R2n)

for s ∈ R defined by

A(s)ξ(t) := J0
dξ

dt
+ S(s, t)ξ(t).
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This is a family of symmetric operator defined on (a dense subset

of) L2(R/Z,R2n).

These symmetric operators have a discrete spectrum consisting of

real eigenvalues, each having finite multiplicity (see [33]). Also, the

eigenvalues of A(s) occur in continuous families λj(s) for j ∈ Z

counted with multiplicity. The limit operator A± = lim
s→±∞

A(s) is

invertible by (3.8). The Fredholm index of (3.6) is then given by the

spectral flow of A (see [3], [28]), which roughly speaking measures

the algebraic increase of eigenvalues of A(s) flowing from negative

to positive, as s goes form −∞ to ∞. More precisely,

indexF = #{j : λj(−∞) < 0 < λj(∞)}−#{j : λj(−∞) > 0 > λj(∞)}.

Now we want to prove that the spectral flow agrees with µ(Ψ−) −
µ(Ψ+). This would prove the remaining part of proposition 3.13.

Proof of Proposition 3.13 (2). In each homotopy class of LP∗, there

exists a path of the form Ψ(t) ∈ Sp(2n,R) = exp(J0St) ∈ Sp(2n,R)

with Ψ(1) = W±, where S is a constant real symmetric matrix.

More precisely, recall that by proposition 3.7, each homotopy class

in LP∗ is characterized by the Maslov index µ(Ψ) = k.

For odd n− k, by decomposing R2n as (R2)n, choose

S =





0 log 2

log 2 0



 ⊕
n−1
⊕

j=1





mjπ 0

0 mjπ



 =

n
⊕

j=1

Sj (3.18)

where m1 = n− k − 2 and mj = −1 otherwise.
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For even n− k, choose

S =





−π 0

0 −π



 ⊕
n−1
⊕

j=1





mjπ 0

0 mjπ



 =
n

⊕

j=1

Sj (3.19)

where m1 = n− k − 1 and mj = −1 otherwise.

We will prove that for these S, the induced Ψ(t) = exp(J0St) has

µ(Ψ) = k and Ψ(1) = W±, in particular Ψ ∈ LP∗. Thus each

path in LP∗ is homotopic to exactly one of these Ψ. Indeed if

Ψ(1) = W±, then by definition 3.6 of µ and the product and de-

terminant property in proposition 3.2, µ(Ψ) =
n

∑

j=1

µ(Ψj), where

Ψj(t) := exp(J0Sjt). By lemma 3.15, indexF depends only on the

endpoints S±, which in particular can be chosen in the form of

(3.18) or (3.19). So now let

S(s) = β(s)S+ + (1 − β(s))S−

where S± is of the above form and β ∈ C∞(R, [0, 1]) is an non-

decreasing smooth function such that

β(s) =











1 if s ≥ 1

0 if s ≤ −1

We now study the spectral flow for A(s) given by this S(s). It

also suffices to decompose the matrix Ψ(s, t) = exp(J0S(s)t) ∈
Sp(2n,R) into 2 × 2 blocks. So we can assume n = 1. There

are three cases.



Chapter 3. Fredholm Theory 69

Case (i)

S− =





−k−π 0

0 −k−π



 , S+ =





−k+π 0

0 −k+π



 where k± are odd.

Then

Ψ±(t) = exp(J0S
±t) =





cos(k±πt) − sin(k±πt)

sin(k±πt) cos(k±πt)



 ∈ U(1)

By the determinant property in proposition 3.2, ρ(Ψ±) = eik
±πt, so

Ψ(1) = −I = W+ and µ(Ψ±) = k±. Now consider

λ ∈ σ(A(s)) ⇔ J0
dξ

dt
+ S(s)ξ = λξ for some ξ 6= 0

⇔ dξ

dt
= J0(S(s) − λI)ξ

⇔ ξ(t) = exp(J0(S(s) − λI)t)ξ(0) for some ξ(0) 6= 0

⇔ 1 ∈ σ(exp(J0(S(s) − λI))) as ξ(1) = ξ(0) 6= 0.

S(s) =





−ω(s) 0

0 −ω(s)



 where ω(s) = (β(s)k+ + (1 − β(s))k−)π.

So

exp(J0(S(s) − λI)t) =





cos(ω(s) + λ)t − sin(ω(s) + λ)t

sin(ω(s) + λ)t cos(ω(s) + λ)t



 .

This implies 1 ∈ σ(exp(J0(S(s)−λI))) ⇔ ω(s)+λ ∈ 2πZ. Therefore

the family of eigenvalues of A(s) are exactly

λj(s) = −ω(s) + 2πj where j ∈ Z
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and each λj(s) occurs in multiplicity 2. As ω(s) varies monotonically

from k−π to k+π and k± are odd, there are exactly |k−−k+|
2 values

(not counting multiplicities) of j such that 0 ∈ σ(A(s)) for some s,

i.e. these eigenvalues of A(s) will cross the zero. (For example if

k− = −3, k+ = 1, then all these j are j = 0, 1). If k− > k+, then

λj(s) increase when s goes from −∞ to ∞, otherwise if k− < k+

they decrease. Thus the spectral flow of A(s) is k− − k+.

Similar argument shows that for case (ii) where

S− =





0 log 2

log 2 0



 and S+ =





−π 0

0 −π



 , we have

µ(Ψ−) = 0 and µ(Ψ+) = 1.

There is only one eigenvalue λ(s) = (1− β(s)) log 2− β(s)π of A(s)

crossing zero (with constant eigenfuction ξ(t) ≡ (1, 1)). Thus the

spectral flow is -1 which agrees with µ(Ψ−) − µ(Ψ+).

The remaining case (iii) is the same as case (ii) except the roles of

S+ and S− are switched. Thus by reversing time s we get the same

conclusion.

Consider the more general operator F : W 1,2(R× (R/Z),R2n) →
L2(R × (R/Z),R2n) by

Fξ =
∂ξ

∂s
+ J0

∂ξ

∂t
+ (A+ S)ξ (3.20)

where S is symmetric as before and A = A(s, t) ∈ M(2n,R) is
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continuous matrix valued and is skew symmetric for all s, t. Suppose

lim
s→±∞

A(s, t) = 0

uniformly in t. Then this operator F is a compact perturbation of

(3.6) and so is also Fredholm of the same index.

Now recall that for a pair of non-degenerate solutions x± ∈ P (H)

of (2.1) and u ∈ C∞(R × S1,M) such that

lim
s→±∞

u(s, t) = x±(t), (3.21)

lim
s→±∞

∂u

∂t
= ẋ±(t) and lim

s→±∞
∂u

∂s
= 0 (3.22)

where all limits are uniform in t, the linear operator F (u) : W 1,2(u∗TM) →
L2(u∗TM) is defined by

F (u)ξ := ∇sξ + J(u)∇tξ + (∇ξJ(u))
∂u

∂t
+ ∇ξ∇Ht(u). (3.23)

Theorem 3.16. Suppose u : R × S1 → M satisfies (3.21), (3.22)

for a pair of non-degenerate solutions x± ∈ P (H) of (2.1). Then

F (u) is Fredholm and its index is given by

indexF (u) = µ(x−) − µ(x+).

Proof. The key is to use a compact perturbation if necessary, and

using local coordinates, alter the operator to the form in (3.6). Then

we can apply proposition 3.13 to get the index as the difference of

the respective Maslov indices.
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By altering u if necessary, we can assume that

u(s, t) =







x−(t) if x ≤ −1

x+(t) if x ≥ 1.

This would not change the Fredholm index. By proposition 3.8,

there is a symplectic orthogonal trivialization

Φ = Φ(s, t) : R2n → Tu(s,t)M

In this local coordinates, the operator F (u) is represented by

F := Φ−1F (u)Φ : W 1,2(R × S1,R2n) → L2(R × S1,R2n)

F =
∂

∂s
+ J0

∂

∂t
+ (S +A),

where S and A denotes the symmetric and anti-symmetric part of

the matrix given by 〈Zi, F (u)Zj〉 and Zi = Zi(s, t) ∈ Tu(s,t)M are the

orthonormal frames given by the trivialization Φ. (A side remark:

the asymptotic operators J0
∂
∂t +S(±∞) is the Hessian of AH at x±

in the trivialization Φ(±∞), so F can be regarded as one-parameter

family of operators which is asymptotically symmetric.) By direct

calculations,

Aij = 〈Zi,∇sZj〉 = −Aji and

Sij = 〈Zi, (∇Zj
J)
∂u

∂t
+ ∇Zj

∇Ht + J∇tZj〉 = Sji. (3.24)

As Zi(s, t) ≡ Zi(±1, t) for ±s ≥ 1, A(s, t) = 0 for |s| ≥ 1. So by

a compact perturbation we can assume that A(s, t) = 0 for all s, t.
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So the operator becomes

F =
∂

∂s
+ J0

∂

∂t
+ S.

Let S± = S(±, t), Φ±(t) = Φ(±1, t) and Ψ±(t) ∈ Sp(2n,R) be

given by (3.5). It remains to show Ψ± satisfies (3.7). Clearly we

only have to show it for Ψ+, so to simplify the notations, denote

S = S+, Φt = Φ(t) = Φ+(t), x0 = x+(0), Ψt = Ψ+(t), x(t) = x+(t)

and dψt = dψt(x
+(0)). Let v ∈ R2n. By definition,

ΦtΨtv = dψtΦ0v. (3.25)

Applying covariant derivative with respect to t on R.H.S.,

∇t(dψtΦ0v) = ∇t∇s=0(ψt ◦ expx0
(sΦ0v))

= ∇s=0∇t(ψt ◦ expx0
(sΦ0v))

= ∇dψtΦ0vX(x(t))

= ∇ΦtΨtvX.

So differentiating (3.25) gives

ΦtΨ̇tv + (∇tΦt)Ψtv = ∇ΦtΨtvX.
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Consider

ΦtJ0Ψ̇tv = JΦtΨ̇tv (as ΦtJ0 = JΦt)

= J(∇ΦtΨtvX − (∇tΦt)Ψtv)

= J(∇ΦtΨtv(J∇H) − (∇tΦt)Ψtv)

= J(∇ΦtΨtvJ)∇H −∇ΦtΨtv(∇H) − J(∇tΦt)Ψtv

= −∇ΦtΨtvJ(J∇H) −∇ΦtΨtv(∇H) − J(∇tΦt)Ψtv

= −(∇ΦtΨtvJ)(X) −∇ΦtΨtv(∇H) − J(∇tΦt)Ψtv

= −ΦtS(t)Ψtv by (3.24).

Therefore

Ψ̇±(t) = J0S
±Ψ±(t).

By proposition 3.13,

indexF (u) = indexF = µ(Ψ−) − µ(Ψ+) = µ(x−) − µ(x+).



Chapter 4

Floer Homology

In this chapter, we will look more closely at the Floer homology

groups of Hamiltonian function for symplectic manifolds. We will

provide some details of the proofs of the invariance of Floer ho-

mology and the isomorphism between Floer homology and singular

homology of M .

4.1 Transversality

Recall that M is the set of bounded solution to (2.7) and (H, J) is

called a regular pair if

1. All contractible x ∈ P (H) are non-degenerate, and

2. If x± ∈ P (H) are contractible and u ∈ M(x−, x+), then F (u)

is surjective.

Proposition 4.1. There is a dense subset of smooth almost complex

structure Jreg ⊂ C∞(End(TM)) such that for all J ∈ Jreg and u ∈

75
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M, F (u) is onto, i.e. (H, J) is regular.

The proof can be found in [9] and [11]. It uses a result of Smale

[35], which generalizes the Sard’s theorem into the infinite dimen-

sional case.

Using this result, by choosing (H, J) to be regular, and using the

implicit function theorem, it follows that there is a neighborhood

of u in M(x, y) which is diffeomorphic to a neighborhood of zero in

kerF (u). Furthermore, by theorem 3.16, we have

dimM(x, y) = indexF (u)

= µ(x) − µ(y). (4.1)

4.2 Compactness and Gluing

In this section we fix a smooth Hamiltonian function H = H(t, x)

and J ∈ J and denote M(x, y;H, J) simply by M(x, y). Define

the space of bounded solution to (2.7)

M := {u ∈ C∞(R×S1,M) : u solves (2.7) and is contractible, E(u) <∞}.

Then theorem 2.14 can be restated as

Theorem 4.2. M =
⋃

x,y∈P (H)

M(x, y).

M also has the following compactness property.
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Theorem 4.3 (Gromov compactness). Let (un)n∈N be a sequence

in M(x, y). Then there is a subsequence (unk
)k∈N and sequences of

time (sik)k∈N, i = 0, · · · , m such that

lim
k→∞

unk
(s+ sik, t) = ui(s, t) (4.2)

where ui ∈ M(xi, xi+1), xi ∈ P (H), x0 = x, xm+1 = y. The conver-

gence is uniform in all derivatives on compact subset (i.e. in C∞
loc

topology). If (H, J) is a regular pair, then

µ(xi) > µ(xi+1) for i = 0, · · · , m.

Remark 4.4. The convergence as in theorem 4.3 (4.2), m ≥ 1,

is called a geometric convergence (or weak convergence) to-

wards a broken trajectory of order m.

Figure 4.1: Convergence towards a broken trajectory.

The geometric convergence for a sequence of unparametrized trajec-

tory ûn = [un] ∈ M̂(x, y) is defined analogously, and is denoted

as

ûn ⇀ (û0, · · · , ûm).
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If µ(x) − µ(y) = 2 and the order m = 1 then we say it converges

to a simply broken trajectory.

We emphasize here that in theorem 4.3, our assumption (2.3)

that ω vanishes on π2(M) is essential, otherwise another kind of

limiting behavior, called bubbling, would occur. The “⊃” part of

theorem 4.2 has been proved in theorem 2.14. For “⊂”, we need the

following two lemmas.

Denote the open disk of radius r by Br := {z ∈ C : |z| < r}.

Lemma 4.5. There exists a constant ε = ε(M,ω,H, J) > 0 such

that for all solution u ∈ C∞(Br,M) of (2.7) with

∫

Br

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

dt ds ≤ ε,

then
∣

∣

∣

∣

∂u

∂s
(0)

∣

∣

∣

∣

≤ 1 +
8

πr2

∫

Br

∣

∣

∣

∣

∂u

∂s

∣

∣

∣

∣

2

dt ds.

By lemma 4.5, for u ∈ M, since
∣

∣

∂u
∂t

(s, t)
∣

∣ ≤
∣

∣

∂u
∂s

(s, t)
∣

∣+|∇H(t, u)|
and M is compact,

||∇u||L∞(R×S1) := sup
s∈R,t∈S1

{max(
∂u

∂s
(s, t),

∂u

∂t
(s, t))} <∞. (4.3)

For u : R×S1 ∼= C/iZ →M , we can also regard u as u = u(s+it) ∈
C∞(C,M). Of course it does not really matter if we are concerning

about || · ||L∞.
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Lemma 4.6. Let Ω ⊂ C be an open domain. Then every sequence

of solutions un ∈ C∞(Ω,M) of (2.7) such that

sup
n∈N

||∇un||L∞(Ω) <∞

has a subsequence converging in C∞
loc topology.

Note that such (sub-) sequence un converges to some u ∈ M.

For if p = u(s0, t0) ∈ M , by choosing a chart around p to some

relatively compact domain Ω ⊂ R2n and by restricting the domain

of un, we can assume that un ∈ C∞(R × S1,Ω) such that

∂un
∂s

+ J(un)
∂un
∂t

+ ∇Ht(un) = 0.

Then for ε > 0,

∣

∣

∣

∣

∂u

∂s
+ J(u)

∂u

∂t
+ ∇Ht(u)

∣

∣

∣

∣

=

∣

∣

∣

∣

(
∂u

∂s
+ J(u)

∂u

∂t
+ ∇Ht(u)) − (

∂un
∂s

+ J(un)
∂un
∂t

+ ∇Ht(un))

∣

∣

∣

∣

< ǫ

for sufficiently large n by the convergence of un and uniform con-

tinuity of H and J . Since ε > 0 is arbitrary we conclude that u

satisfies (2.7).

The proofs of lemma 4.5 and lemma 4.6 can be found in [30].

Proof of theorem 4.2. We have to prove that M =
⋃

x,y∈P (H)

M(x, y).

Suppose not, then there exists u ∈ M, ε > 0 and a sequence
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(sn, tn) ∈ R × S1 such that |sn| → ∞ and for all x ∈ P (H), n ∈ N,

d(u(sn, tn), x(tn)) ≥ ε

where d denotes the distance in M induced by its Riemannian met-

ric. Define un(s, t) := u(s+ sn, t). Then by lemma 4.6 there exists a

subsequence, which we still denote by un for convenience, converging

to some v ∈ M. Assume also that tn converges to t0. Then

d(v(0, t0), x(t0)) ≥ ε (4.4)

for any x ∈ P (H). Since |sn| → ∞, as
∫

R

∫

S1

∣

∣

∂u
∂s

∣

∣

2
dt ds <∞,

∫ T

−T

∫

S1

∣

∣

∣

∣

∂v

∂s

∣

∣

∣

∣

2

dt ds = lim
n→∞

∫ T

−T

∫

S1

∣

∣

∣

∣

∂un
∂s

∣

∣

∣

∣

2

dt ds

= lim
n→∞

∫ T

−T

∫

S1

∣

∣

∣

∣

∂u

∂s
(s+ sn, t)

∣

∣

∣

∣

2

dt ds = 0

for all T > 0. So ∂v
∂s = 0 and hence v is independent of s, but then

v(s, t) = x(t) for some x ∈ P (H), this contradicts (4.4).

Proof of theorem 4.3. This proof is from [30].

Step 1. We first claim that

sup
u∈M

||∇u||L∞ <∞

We prove by contradiction. Suppose the contrary, then there exists

a sequence un ∈ M such that

cn := ||∇un||L∞ → ∞.



Chapter 4. Floer Homology 81

We assume the domain of un is C for convenience. So there exists

zn = sn + itn such that

max

{∣

∣

∣

∣

∂un
∂s

(zn)

∣

∣

∣

∣

,

∣

∣

∣

∣

∂un
∂t

(zn)

∣

∣

∣

∣

}

≥ cn
2
.

Define vn(z) := un(zn+
1
cn
z) and denote Br(z0) := {z ∈ C : |z−z0| <

r}. Then

|∇vn(0)| ≥ 1

2
, ||∇vn||L∞ ≤ 1, (4.5)

∂vn
∂s

+ J(vn)
∂vn
∂t

+
1

cn
∇H(vn, tn +

t

cn
) = 0, and (4.6)

∫

Bcn(0)

∣

∣

∣

∣

∂vn
∂s

∣

∣

∣

∣

2

=

∫

B1(zn)

∣

∣

∣

∣

∂un
∂s

∣

∣

∣

∣

2

≤ 2E(un) (by definition 2.13)

≤ 2 max
x,y∈P (H)

|A(x)− A(y)| (by (2.10)). (4.7)

From (4.5) and by lemma 4.6, vn converges to some v ∈ C∞(C,M)

such that

∇v(0) 6= 0, (4.8)

∂v

∂s
+ J(v)

∂v

∂t
= 0, and (4.9)

0 <

∫

C

∣

∣

∣

∣

∂v

∂s

∣

∣

∣

∣

2

<∞. (4.10)

Define γr : S1 →M by γr(θ) := v(rei2πθ), observe that

|γ̇r(θ)| = 2πr

∣

∣

∣

∣

∂v

∂s
(rei2πθ)

∣

∣

∣

∣

.

So
∫ ∞

0

1

2πr
||γ̇r||2L2(S1)dr =

∫ ∞

0

1

2πr

∫ 1

0

|γ̇r(θ)|2dθ dr =

∫

C

∣

∣

∣

∣

∂v

∂s

∣

∣

∣

∣

2

<∞.
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As the length of γr, l(γr) =
∫ 1

0 |γ̇r| · 1 dθ ≤ (
∫ 1

0 |γ̇r|2dθ)
1

2 = ||γ̇r||L2

by the Cauchy-Schwarz inequality, by choosing a sufficiently large

R > 0, l(γR) can be arbitrary small. Choose a symplectic chart

h : U → R2n of M such that γr(S
1) ⊂ U , h(U) is a bounded convex

domain and h(γr(1)) = 0.

Define w : S2 = C ∪ {∞} →M by

w(rei2πθ) :=











v(rei2πθ) r ≤ R

h−1(Rr h ◦ v(Rei2πθ)) r ≥ R.

Let w̃(ρ, θ) := ρRγR(θ), ε > 0 and consider

∫

S2−BR

w∗ω = −
∫

B 1
R

w̃∗ω0

=

∫ 1/R

0

∫ 1

0

ω0(RγR, ρRγ̇R)dρ dθ

= R2

∫ 1/R

0

∫ 1

0

ρg(γR,−Jγ̇R)dρ dθ

= R2

∫ 1/R

0

∫ 1

0

ρ|γR||γ̇R|dρ dθ

≤ c · l(γR) < ε

for sufficiently large R where the constant c > 0 depends on h(U)

only. Therefore

∫

S2

w∗ω ≥
∫

BR

v∗ω − ε(R) =

∫

BR

∣

∣

∣

∣

∂v

∂s

∣

∣

∣

∣

2

− ε(R) > 0

for sufficiently large R, the last equation follows from ω(∂v∂s ,
∂v
∂t ) =

ω(∂v
∂s
, J ∂v

∂s
) = |∂v

∂s
|2. This contradicts our assumption that ω(π2(M)) =
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0. Our claim is proved.

Step 2. Since P (H) are isolated, there exists ε > 0 such that

sup
t∈S1

d(x(t), y(t)) > 2ε for all x, y ∈ P (H). Given a sequence un

in M(x, y), clearly we can assume x 6= y, for otherwise x = y im-

plies E(un) = A(x) − A(y) = 0 and so un ≡ x for all n by remark

2.16 and we have nothing to prove. Define

s1
n := inf{s ∈ R : d(un(s, t), x(t)) > ε for some t ∈ S1}.

The sets which we are taking infimum at are all non-empty as

lim
s→∞

un(s, t) = y(t) and s1
n 6= −∞ by a similar reason, as lim

s→−∞
un(s, t) =

x(t). By step 1 and lemma 4.6, there is a subsequence (which for

convenience taken to be itself), such that u1
n(s, t) := un(s + s1

n, t)

converges to some u1 ∈ M. By theorem 4.2 (1), u1 ∈ M(x0, x1)

for some x0, x1 ∈ P (H). Since d(u1(s, t), x(t)) ≤ ε for all s ≤ 0,

x0 = x. Also x1 6= x, for if otherwise, u1 ≡ x(t) again by remark

2.16. But by the definition of u1
n there exists t0 ∈ S1 such that

d(u1(0, t0), x(t0)) ≥ ε, a contradiction. If x1 = y, then we are done.

Otherwise we prove by induction, i.e. we claim that if we have

ui ∈ M(xi−1, xi), lim
n→∞

un(s + sin, t) = ui(s, t) for i = 0, · · · , k with

xk 6= y, then there exists uk+1 ∈ M(xk, xk+1) and a sequence sk+1
n

such that lim
n→∞

un(s + sk+1
n , t) = uk+1(s, t) for some xk+1 ∈ P (H),

xk+1 6= xk.

Since uk ∈ M(xk−1, xk), there exists s0 such that if s ≥ s0, d(u
k(s, t), xk(t)) <

ε for all t ∈ S1. Then for sufficiently large n, for all t ∈ S1,
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d(ukn(s0, t), x
k(t)) = d(un(s0 + skn, t), x

k(t)) < ε. So by passing into

subsequence, define

sk+1
n := sup{s : s ≥ skn + s0, d(un(s, t), x

k(t)) < ε for all t ∈ S1}.

Then without loss of generality the sequence uk+1(s, t) := un(s +

sk+1
n ) converges to uk+1 ∈ M by step 1 and lemma 4.6. We claim

that uk+1 ∈ M(xk, xk+1) with xk+1 6= xk.

The sequence sk+1
n − skn → ∞ for otherwise [s0, s

k+1
n − skn] is con-

tained in a compact interval [s0, s1], then for each t, uk+1
n (0, t) =

ukn(s
k+1
n − skn, t) will converge to a point in uk([s0, s1] × S1), so

d(uk+1(0, t), xk(t)) < ε. But by our construction there exists t0 ∈ S1

such that d(uk+1(0, t0), x
k(t0)) ≥ ε, a contradiction. So skn − sk+1

n +

s0 → −∞ and lim
n→∞

uk+1
n (skn−sk+1

n +s0, t) = lim
n→∞

ukn(s0, t) = uk(s0, t)

with d(uk(s0, t), x
k(t)) < ε. It follows that lim

s→−∞
uk+1(s, t) = xk(t).

xk+1 6= xk by the same reason as before.

By remark 2.16, if xk 6= xk+1 and uk ∈ M(xk, xk+1), A(xk) >

A(xk+1), i.e. the action decreases. Since P (H) is finite, this process

must terminate to arrive at xm+1 = y, m <∞.

Finally if (H, J) is regular, as xi 6= xi+1 for all i, the moduli space

M(xi, xi+1) ∋ ui is at least one-dimensional and it follows from

the dimension formula (4.1) dimM(xi, xi+1) = µ(xi)−µ(xi+1) that

µ(xi) > µ(xi+1).

If un does not converge to broken trajectories (of order m ≥ 1),

then its convergence is stronger:
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Proposition 4.7. Let (un)n∈N be a sequence in M(x, y) converging

to u ∈ M(x, y) in C∞
loc sense,

lim
n→∞

un(s, t) = u(s, t).

Then it also converges in C∞ sense, i.e. it converges uniformly in

all derivatives.

The idea is that for fixed ends x and y, the non-degeneracy of

x and y implies uniform exponential convergence of the ends of the

trajectories. Away from the two ends, the uniform convergence is

ensured by theorem 4.3.

Proposition 4.8. Let (H, J) be a regular pair and x, y ∈ P (H)

with µ(x) − µ(y) = 1, then the 0-dimensional manifold M̂(x, y) is

compact. i.e. it consists of finite number of points. In other words

the set of trajectories between x and y is finite (modulo shifting).

Proof. Let un ∈ M(x, y). Then by theorem 4.3, without loss of

generality we can assume that

lim
n→∞

un(s, t) = u(s, t)

in C∞
loc sense where u(s, t) ∈ M(x, y) (since µ(x) − µ(y) = 1, it

cannot converge to a broken trajectory.) By proposition 4.7, un

converges uniformly to u and thus [un] → [u]. Therefore M̂(x, y) is

compact.
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We have to analyze the one-dimensional moduli space of un-

parametrized trajectories of relative index 2 in order to prove that

the boundary operator really defines Floer homology. We need a

gluing construction due to Floer.

The gluing construction can be considered as a converse of Gro-

mov’s compactness (theorem 4.3), which states that any sequence

un ∈ M(x, y) not converging in M(x, y) must converge (up to a

subsequence) to a broken trajectory of some order m. The gluing

construction tells us that we can reverse this process, i.e. we can

“glue” a broken trajectory of order m (u0, · · · , um) ∈ M(x0, x1) ×
· · · ×M(xm, xm+1) together to get a trajectory in M(x0, xm+1), up

to m gluing parameters (which in some sense measures how close

the resulting trajectory with each ui is). For simplicity we will only

give the statement for gluing a simply broken trajectory, which is

sufficient in our treatment.

Proposition 4.9 (Floer’s Gluing). (Unparametrized version)

Let (H, J) be regular and K ⊂ M̂(x, y) × M̂(y, z) be a compact

subset. Then there exists a constant ρ0 = ρ0(K) and a gluing map

# : K × [ρ0,∞) → M̂(x, z)

(û, v̂, ρ) 7→ û#ρv̂

such that

1. # is an embedding;
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2. û#ρv̂ converges to the broken trajectory (û, v̂) geometrically as

ρ→ ∞ (see remark 4.4),

û#ρv̂ ⇀ (û, v̂)

3. for a sequence (ûn)n∈N of unparametrized trajectories in M̂(x, z)

converging geometrically to the simply broken trajectory (û, v̂),

then for sufficiently large n, ûn lies within the range of #.

The details can be found in [11] and also [8]. The idea is that

we can first “pre-glue” u and v at y to get an approximate solution

u#̂ρv of (2.7) such that ||∂(u#̂ρv)||Lp ≤ e−cρ for large enough ρ

where c = c(K) > 0. Explicitly this can be done by

u#̂ρv(s, t) :=



























u(s+ ρ, t) , s ≤ −1

expy(t)(β(−s)ξ(s+ ρ, t) + β(s)ζ(s− ρ, t)) , s ∈ [−1, 1]

u(s− ρ, t) , s ≥ 1.

where ξ, ζ are defined such that u(s, t) = expy(t)(ξ(s, t)) for s ≥ ρ0−1

and v(s, t) = expy(t)(ζ(s, t)) for s ≤ −ρ0 + 1; β ∈ C∞(R, [0, 1]) is

non-decreasing such that β(s) = 0 for s ≤ 0 and β(s) = 1 for

s ≥ 1. One then uses the Picard’s method (see [8] lemma 4.2)

to prove the existence of a vector field ξ = ξ(u, v, ρ) on w :=

u#̂ρv with ||ξ||W 1,p ≤ e−cρ and such that expw ξ is in M(x, z).

We then define û#ρv̂ := [expw ξ] ∈ M̂(x, z). Of course this also

gives the parametrized version of the gluing of u and v, and up to
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reparametrizations of u, v and u#ρv, u#ρv is uniquely defined by

u and v.

The techniques of gluing combined with Gromov’s compactness are

useful to prove several important results as we will see later.

4.3 Floer Homology

We will use the Maslov index to give a grading of the Floer homology

groups. Proposition 4.8 is used to construct the boundary operator

in Floer homology. Let (H, J) be a fixed regular pair. For simplicity,

we work with Z2 coefficient only. The readers are reminded of the

many similarities between the construction of Floer homology and

that of Morse homology as given in section 1.2.

Definition 4.10. Define the k-th Floer chain complex as the

vector space over Z2 generated by the periodic solution x ∈ P (H) of

(2.1) with Maslov index k

Ck := spanZ2
{x ∈ P (H) : µ(x) = k}.

If µ(x) − µ(y) = 1, define 〈∂x, y〉 := #M̂(x, y) (mod 2). Then the

boundary operator ∂k : Ck → Ck−1 is defined by

∂kx :=
∑

y∈Ck−1

〈∂x, y〉y

for x ∈ P (H) with µ(x) = k and extends it linearly.
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Floer proved the following theorem in the monotone case, estab-

lishing the existence of Floer homology:

Theorem 4.11. (Floer [11]) The boundary operators satisfy

∂k ◦ ∂k+1 = 0.

Proof. Fix x ∈ Ck+1, this statement is equivalent to

∑

y∈Ck,z∈Ck−1

〈∂x, y〉〈∂y, z〉z = 0 (mod 2).

So it is equivalent to prove for x ∈ Ck+1, z ∈ Ck−1, the number

of pairs of unparametrized trajectories (û, v̂) ∈ M̂(x, y) × M̂(y, z)

with y ∈ Ck is even. This is proved by analyzing M̂(x, z). First

note that any component of the one-dimensional manifold M̂(x, z)

can only be a circle or is an open interval by the classification the-

orem. By (3) in the gluing proposition 4.9, each of the above (û, v̂)

corresponds to an endpoint of a non-compact component (i.e. an

open interval) of M̂(x, z). By Gromov’s compactness theorem 4.3,

the other endpoint of this component must converge geometrically

to another pair of unparametrized trajectories connecting x and z.

Therefore there must be an even number of such pairs.

Definition 4.12. Define the Floer homology groups of the pair

(H, J) on M

HFk(M ;H, J) := ker ∂k/im∂k+1.
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4.4 Invariance of Floer Homology

We will show in this section that the Floer homology groups are

independent of the choice of the regular pair (H, J).

Note that the space J of all ω-compatible almost complex struc-

tures is contractible, thus we can always find a smooth homotopy

between two regular pairs (Hα, Jα) and (Hβ, Jβ). More precisely,

this consists of a smooth homotopy of Hamiltonian functions H
βα

:

R× S1 ×M → R and a smooth homotopy of almost complex struc-

tures J
βα

: R ×M → C∞(End(TM)) such that

(H
βα

(s, t, x), J
βα

(s, x)) =











(Hα(t, x), Jα(x)) if s ≤ −T

(Hβ(t, x), Jβ(x)) if s ≥ T

for some T > 0.

Given such homotopies and suppose xα ∈ P (Hα), xβ ∈ P (Hβ).

Denote Hβα by H and Jβα by J . Consider the solution u : R×S1 →
M of the partial differential equation

∂u

∂s
+ J(s, u)

∂u

∂t
+ ∇H(s, t, u) = 0 (4.11)

with the boundary conditions

lim
s→−∞

u(s, t) = xα(t), lim
s→∞

u(s, t) = xβ(t). (4.12)

This equation can be considered as the gradient flow equation of the

time dependent action functional A = AHs
with respect to the time-

dependent metric induced by Js. As in theorem 2.14, the solutions
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of (4.11) with (4.12) has bounded energy and conversely a solution

of (4.11) with bounded energy implies the limits in (4.12) exist.

As before, for such u, by linearizing (4.11) in the direction of ξ ∈
C∞(u∗TM), we get the operator F (u) : W 1,p(u∗TM) → Lp(u∗TM)

for p ≥ 2 defined by

F (u)ξ := ∇sξ + J(s, u)∇tξ + (∇ξJ(s, u))
∂u

∂t
+ ∇ξ∇H(s, t, u).(4.13)

All the previous results still hold in this time dependent case. In

particular F (u) is a Fredholm operator and its index is given by

indexF (u) = µ(xα, Hα) − µ(xβ, Hβ).

Definition 4.13. Let (Hα, Jα), (Hβ, Jβ) be two regular pairs, a

smooth homotopy (H
βα

, J
βα

) between them is called a regular ho-

motopy if for any xα ∈ P (Hα), xβ ∈ P (Hβ), whenever u satisfies

(4.11) and (4.12), F (u) is onto.

The space of all regular homotopies is a dense subset in the space

of all homotopies between (Hα, Jα) and (Hβ, Jβ) in C∞
loc topology,

i.e. in the topology of uniform convergence of all derivatives on

compact subset. For such a regular homotopy, the space

M(xα, xβ;Hβα, Jβα) := {u : R×S1 →M | u satisfies (4.11) and (4.12)}

of connecting trajectories is a finite dimensional manifold of dimen-

sion

dimM(xα, xβ;Hβα, Jβα) = µ(xα, Hα) − µ(xβ, Hβ).
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Note that in this case the shifting property by R on M(xα, xβ;Hβα, Jβα)

is lost. M(xα, xβ;Hβα, Jβα) can be non-empty even if µ(xα, Hα) =

µ(xβ, Hβ). In analogy with proposition 4.8 the 0-dimensional man-

ifold M(xα, xβ;Hβα, Jβα) is compact when µ(xα, Hα) = µ(xβ, Hβ),

i.e. it is finite. In this case, we define the number

〈φβαxα, xβ〉 := #M(xα, xβ;Hβα, Jβα) (mod 2).

We then define the map

φβα = φ(Hβα, Jβα) : Ck(M ;Hα) → Ck(M ;Hβ)

by

φβαxα :=
∑

µ(xβ ,Hβ)=k

〈φβαxα, xβ〉xβ

if µ(xα, Hα) = k.

Proposition 4.14. For a regular homotopy (Hβα, Jβα) between two

regular pairs (Hα, Jα) and (Hβ, Jβ), the map φ = φβα as constructed

above is a chain map, i.e.

φ ◦ ∂α = ∂β ◦ φ.

Sketch of proof. The proof is similar to that of theorem 4.11. Denote

Cα
k := Ck(M ;Hα) and Cβ

k := Ck(M ;Hβ). We have to show for any

x ∈ Cα
k+1 and y ∈ Cβ

k ,

∑

z∈Cα
k

〈∂αx, z〉〈φz, y〉 =
∑

w∈Cβ
k+1

〈φx, w〉〈∂βw, y〉 (mod 2)
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It suffices to show that there is an even number of pairs of un-

parametrized trajectories between x and y. Let (û, v) ∈ M̂(x, z;Hα, Jα)×
M(z, y;Hβα, Jβα), where z ∈ Cα

k . As in the proof of theorem

4.11, each such (û, v) ∈ M̂(x, z;Hα, Jα) × M(z, y;Hβα, Jβα) cor-

responds to an endpoint of a non-compact component (i.e. an

open interval) of the one-dimensional manifold M(x, y;Hβα, Jβα).

One endpoint of this component is identified with (û, v) as above,

and the other endpoint must be identified with a pair (q, r̂) ∈
M(x, w;Hβα, Jβα) × M̂(w, y;Hβ, Jβ) with w ∈ Cβ

k+1. Therefore

there is an even number of pairs of unparametrized trajectories be-

tween x and y.

Thus every regular homotopy (Hβα, Jβα) between (Hα, Jα) and

(Hβ, Jβ) induces a homomorphism of Floer homology groups. This

homomorphism turns out to be independent of the choice of the

regular homotopy.

Proposition 4.15. For two regular homotopies (Hβα
0 , Jβα0 ) and (Hβα

1 , Jβα1 )

from (Hα, Jα) to (Hβ, Jβ), the associated chain homomorphism φ0 =

φ(Hβα
0 , Jβα0 ) and φ1 = φ(Hβα

1 , Jβα1 ) are chain homotopy equivalent.

i.e. there exists Ψ = Ψk : Cα
k → Cβ

k+1 such that

φ1 − φ0 = ∂β ◦ Ψ + Ψ ◦ ∂α. (4.14)

Sketch of proof. Again this proof is similar to that of theorem 4.11,

as it also uses the compactness-gluing argument. Define Cα
k and Cβ

k
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as before and (Hi, Ji) := (Hβα
i , Jβαi ) for i = 0, 1. We will define the

chain homotopies Ψ = Ψk : Cα
k → Cβ

k+1 such that

φ1 − φ0 = ∂β ◦ Ψ + Ψ ◦ ∂α. (4.15)

(The sign is not important as we are working in Z2 coefficient. ) To

do this, choose a one-parameter family of of homotopy λ 7→ (Hλ, Jλ)

connecting (H0, J0) and (H1, J1), λ ∈ [0, 1], and let x ∈ P (Hα),

y ∈ P (Hβ). ((Hλ, Jλ) may not be a regular homotopy if λ 6= 0, 1.)

Define the λ-parametrized moduli space

M̃(x, y) := {(λ, u) : λ ∈ [0, 1], u ∈ M(x, y;Hλ, Jλ)}.

Then by a similar analysis as before, for a generic choice of (Hλ, Jλ),

this space is a finite dimensional manifold with boundary, and

dimM̃(x, y) = µ(x,Hα) − µ(y,Hβ) + 1. (4.16)

(The parameter λ gives one more dimension than those not parametrized

by λ.) Suppose now x ∈ Cα
k , y ∈ Cβ

k+1, so M̃(x, y) is zero dimen-

sional, we claim that it is finite. Suppose not, then by the Gromov’s

compactness theorem 4.3, there are sequences (λn, un) ∈ M̃(x, y)

with λn → λ0, un → u. Then u satisfies the equation

∂u

∂s
+ Jλ0

(s, u)
∂u

∂t
+ ∇Hλ0

(s, t, u) = 0

for that particular λ0. As u has bounded energy, u ∈ M(z, w) for

some z ∈ P (Hα), w ∈ P (Hβ) . Indeed we must have u ∈ M(x, y).
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For otherwise by theorem 4.3, µ(z) < µ(x) or µ(w) > µ(y), but

then M̃(z, w) = ∅ by equation (4.16), a contradiction. So (λ, u) ∈
M̃(x, y) is a cluster point of the zero dimensional M̃(x, y), but this

contradicts the manifold structure of M̃(x, y). Therefore M̃(x, y)

must be finite.

We then define

Ψ(x) :=
∑

y∈Cβ
k+1

〈Ψx, y〉y (mod 2)

where

〈Ψx, y〉 := #M̃(x, y).

As before, proving (4.15) is equivalent to prove for x ∈ Cα
k , z ∈ Cβ

k ,

∑

y∈Cβ
k+1

〈Ψx, y〉〈∂βy, z〉 +
∑

w∈Cα
k−1

〈∂αx, y〉〈Ψw, z〉 + 〈φ0x, z〉 + 〈φ1x, z〉

= 0 (mod 2). (4.17)

This time we analyze M̃(x, z), we will show each boundary point

and endpoint (which is not contained in M̃(x, z)) of the precompact

1-dimensional manifold M̃(x, z) exactly contributes to one of the

four factors on the L.H.S. of (4.17) (modulo two). As the total num-

ber of boundary points and endpoints are even, the theorem is then

proved. There are four cases. For the first case, suppose the bound-

ary point (0, u) ∈ M̃(x, y), then u is a point in M(x, z;H0, J0), so

it contributes to 〈φ0x, z〉. The second case where (1, u) ∈ M̃(x, z)

is also similar and corresponds to an entry in 〈φ1x, z〉.
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For the remaining cases, suppose there exists a sequence (λn, un) ∈
M̃(x, z) with (λn, un) → (λ0, u) /∈ M̃(x, z). Then u is a bounded

solution of (4.11) with (H, J) = (Hλ0
, Jλ0

). For generic (Hλ, Jλ),

if µ(x,Hα) = µ(z,Hβ) = k, there are only two possibilities, either

u ∈ M(x, y;Hλ0
, Jλ0

) for some y ∈ Cβ
k+1 or u ∈ M(w, z;Hλ0

, Jλ0
)

for some w ∈ Cα
k−1. In the first case, by compactness, un must

converges geometrically (see remark 4.4) to a pair (u, v) where v ∈
M(y, z;Hβ

λ0
, Jβλ0

), and in the second case un converges geometrically

to a pair (r, u) where r ∈ M(x, w;Hα
λ0
, Jαλ0

), and both the pair (u, v)

and (r, u) corresponds to an endpoint of a non-compact component

of M̃(x, z) by the gluing argument. This proves our claim.

Proposition 4.15 shows that there exists a homomorphism of

Floer homology groups which we still denote by

φβα : HF∗(M ;Hα, Jα) → HF∗(M ;Hβ, Jβ).

Theorem 4.16. Let (Hα, Jα), (Hβ, Jβ) and (Hγ, Jγ) be regular

pairs. Then

φβα : HF∗(M ;Hα, Jα)
∼=−→ HF∗(M ;Hβ, Jβ)

is an isomorphism and

φγβ ◦ φβα = φγα, φαα = id. (4.18)

Sketch of proof. It suffices to prove relations (4.18) hold, as φβα

must be an isomorphism with inverse φαβ by choosing γ = α.
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φαα = id follows by choosing the constant homotopy.

Now given (Hβα, Jβα) and (Hγβ, Jγβ) being regular homotopies from

(Hα, Jα) to (Hβ, Jβ) and from (Hβ, Jβ) to (Hγ, Jγ) respectively.

Then for R > 0 large enough,

(HR(s, t, x), JR(s, x)) :=











(Hβα(s+ R, t, x), Jβα(s+R, x)) if s ≤ 0

(Hγβ(s− R, t, x), Jγβ(s−R, x)) if s ≥ 0.

is a regular homotopy from (Hα, Jα) to (Hγ, Jγ). Denote by φR :

Cα
k → Cγ

k the associated chain homomorphism, using the notation

as in the proof of proposition 4.14. It suffices to prove

φR = φγβ ◦ φβα,

or equivalently for any fixed x ∈ Cα
k , z ∈ Cγ

k ,

〈φRx, z〉 =
∑

y∈Cβ
k

〈φβαx, y〉〈φγβy, z〉z. (4.19)

This again follows by a compactness-gluing argument.

Each pair (u, v) ∈ M(x, y;Hβα, Jβα)×M(y, z;Hγβ, Jγβ) for y ∈ Cβ
k

can be glued together to obtain uR ∈ M(x, z;HR, JR) for sufficiently

large R. (There are finitely many such pair, thus gives rise to a

gluing map. ) Conversely by (3) of proposition 4.9, for large enough

R, any uR ∈ M(x, y;HR, JR) must lies within the range of this

gluing map, i.e. there is no other trajectories in M(x, z;HR, JR).

This implies (4.19).
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4.5 An Isomorphism Theorem

We will show in this section that the Floer homology groups are

isomorphic to the singular homology groups of M up to a shift of

the grading. We mainly follow the approach in [33].

Although we are mainly interested in 1-periodic solutions of (2.1), to

establish the above result we have to consider also the τ -periodic so-

lutions for arbitrary τ and we denote this solutions set to be Pτ (H).

We define M(x, y; τ) for x, y ∈ Pτ (H) and Fτ (u) for u ∈ M(x, y; τ)

as in (3.4) analogously as before. We consider an Morse function

H(t, x) = H(x) on M which is independent of t. Then there exists

ε > 0 such that every non-constant periodic solution of (2.1) is of

period greater than ε. In other words if τ < ε then the τ -periodic

solutions are exactly critical points of H:

Pτ (H) = {x(t) ≡ x ∈M : dH(x) = 0}.

For a constant periodic solution x, it turns out that the Maslov

index of x regarded as a 1-periodic solution is related to its Morse

index λ(x,H) regarded as a critical point. More precisely, fix a

Riemannian metric on M by choosing a compatible almost complex

structure J on M , we have

Lemma 4.17. There exists ε > 0 such that for any Morse function

H : M → R with ||H||C2 < ǫ and for every critical point x of H,

µ(x,H) = λ(x,H) − n.
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For the proof, we need another lemma first.

Lemma 4.18. Suppose p is a critical point of a Morse function

H : M → R, {x1, · · · , x2n} are local coordinates around p such that

J is represented by J0 and ∂
∂xi

forms an orthonormal basis for TpM ,

then the differential dψt(p) of ψt at p is given by

dψt(p) = etJ0d
2H(p)

where d2H(p) denotes the Hessian of H at p.

Proof. We denote the differential with respect to x ∈ R2n by d.

Then in the given local coordinates,

d

dt
ψt = J0∇H(ψt)

⇒ d(
d

dt
ψt) = d(J0∇H(ψt))

d

dt
(dψt) = J0(d∇H)(dψt) = J0(d

2H)(dψt).

So dψt(x) satisfies the following linear system of O.D.E.











d
dt

Φ(t, x) = J0(d
2H)Φ(t, x)

Φ(0, x) = I2n×2n.

By the uniqueness of solution, since eJ0(d
2H)t is also a solution, so at

p,

dψt(p) = etJ0d
2H(p).
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Proof of lemma 4.17. Choose a symplectic orthonormal basis for

TxM such that J is represented by J0 ∈ M(2n; R) in this basis.

Let S ∈ M(2n; R) represents the Hessian matrix of H at x with

respect to this basis. By lemma 4.18, the symplectic path induced

by ψt is then given by

Ψ(t) = exp(J0St), t ∈ [0, 1].

S is non-singular as H is a Morse function, so λ(x,H) is given by

the number of negative eigenvalues λ(S) of S. On the other hand,

by definition, µ(x) = µ(Ψ). By theorem 3.7, µ(Ψ) = λ(S) − n.

Therefore µ(x) = λ(x,H) − n.

Observe that if H(t, x) = H(x) is independent of t, then for those

solutions u = u(s) to (2.7) which is also independent of t satisfies

du

ds
= −∇H(u). (4.20)

i.e. it satisfies the gradient flow equation for H. Recall that the

system (4.20) is said to satisfy the Morse-Smale condition if for

any two critical points x and y of H, the unstable manifold W u(x)

and the stable manifold W s(y) intersect transversally.

The Morse homology theorem (theorem 1.24) states that if (4.20)

satisfies the Morse-Smale condition, then the Morse homology of

H is isomorphic to the singular homology of M (g is the metric

induced by J):

HMk(M ;H, g) ∼= Hk(M ; Z2).
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Proposition 4.19. Let J be an almost complex structure on M

compatible with ω and H : M → R is a Morse function such that

(4.20) is Morse-Smale. Then for sufficiently small τ > 0,

1. if u : R →M is a flow line of (4.20), then Fτ (u) is surjective,

and

2. if u(s, t) = u(s, t+ τ) is a bounded τ -periodic solution of (2.7),

then u is independent of t.

See [30] for the proof of (1) and [33], [30] for the proof of (2).

Theorem 4.20. Let (H, J) be a regular pair. Then there exists an

isomorphism

HFk(M ;H, J) → Hk+n(M ; Z2)

from the Floer homology of the pair (H, J) to the singular homology

of M .

Proof of theorem 4.20. We use the notation HFk(M ;H, J, τ) to de-

note the Floer homology as defined before except that the complex

is taken from Pτ (H). In view of theorem 4.16 it suffices to prove this

theorem for any Morse function H : M → R and J ∈ J such that

(4.20) is a Morse-Smale flow. By proposition 4.19, (H, J) is regular

for sufficiently small τ > 0 and the τ -periodic solutions of (4.11)

and (4.12) are independent of t. Thus by lemma 4.17, the Morse

complex of the gradient flow (4.20) agrees with the Floer complex



Chapter 4. Floer Homology 102

with a shifting of n and so we have

HFk(M ;H, J, τ) ∼= HMk+n(M ;H, g) ∼= Hk+n(M ; Z2).

Then observe that the Floer homology groups are independent of

the choice of τ . For a solution u(s, t) = u(s, t + τ) of (4.20) with

respect to a τ -periodic Hamiltonian H(t, x), v(s, t) := u(τs, τt) is

a 1-periodic solution of the corresponding equation with respect to

the 1-periodic Hamiltonian function

H1(t, x) := τH(τt, x).

Also, the corresponding periodic solutions have the same Maslov

index and therefore

HFk(M ;H1, J, 1) ∼= HFk(M ;H, J, τ) ∼= Hk+n(M ; Z2).

So applying the weak Morse inequality (theorem 1.25), Floer [11]

proved the Arnold conjecture in the monotone case.

Corollary 4.21 (Arnold conjecture). Suppose all the periodic so-

lutions of (2.1) are non-degenerate, then the number of periodic

solutions to (2.1) is bounded below by the sum of Betti numbers bi’s

of M :

#P (H) ≥
2n

∑

i=0

bi.
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4.6 Further Applications

We will give in this section some further applications of Floer’s the-

ory. [22] is a good reference and gives a more complete picture than

what I give here.

Floer’s theory for Lagrangian intersection.

As remarked in remark 2.5, the fixed points of a Hamiltonian sym-

plectomorphism can be regarded as the points of intersection of the

graph Γ of ψ and the diagonal ∆ in M ×M . This can be regarded

as a special case of the intersection of two Lagrangian submanifolds

(submanifolds of maximal dimension where the symplectic form re-

stricts to zero): if the product M ×M is endowed with the sym-

plectic form ω × −ω, then it can be showed that both Γ and ∆

are Lagrangian, and Γ is the image of ∆ under the Hamiltonian

symplectomorphism id × ψ. Thus Arnold conjecture can be gener-

alized to ask for the minimal number of points of intersection of a

Lagrangian submanifold L and its image ψ(L) under a Hamiltonian

symplectomorphism ψ in a symplectic manifold M , provided that

the intersection is transveral (this corresponds to the requirement

that the fixed points are non-degenerate in chapter 2). Floer’s the-

ory can again be applied in this case and the Morse inequality as

given in corollary 4.21 was proved by Floer [8] under the assumption

that ω vanishes on π2(M,L).
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Morse theory for periodic solutions

By considering the Floer homology groups with the chain groups

being the contractible τ -periodic solutions to (2.1), τ can be differ-

ent from 1 (as in section 4.5), Salamon and Zehnder [33] show that

under assumption 2.10, and that if all the contractible 1-periodic so-

lutions to (2.1) are weakly non-degenerate, then there are infinitely

many contractible periodic solutions with integer periods.

Here a periodic solution x is weakly non-degenerate if at least one

eigenvalue of dψ(x(0)) is not 1.

Similar to the proof of Arnold’s conjecture, by applying the Morse

inequality (theorem 1.26), denoting the number of contractible τ -

periodic solutions to (2.1) with Maslov index k by pk(τ), they also

obtain the following Morse-type inequality:

Theorem 4.22. Suppose all the periodic solutions of (2.1) are non-

degenerate, then

bn+k − bn+k−1 + · · · (−1)n+kb0 ≤ pk(τ) − pk−1(τ) + · · ·

for k ∈ Z, where bk’s denote the Betti numbers of M .
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lag, 1993.

[35] S. Smale. An infinite dimensional version of Sard’s theorem.

Amer. J. Math, 87(4):861–866, 1965.

[36] S. Smale. Stable manifolds for differential equations and diffeo-

morphisms. The Collected Papers of Stephen Smale, 2000.

[37] A. Weinstein. Periodic orbits for convex Hamiltonian systems.

Ann. of Math, 108(2):507–518, 1978.

[38] E. Witten. Supersymmetry and Morse theory. J. Diff. Geom,

17(4):661–692, 1982.


	Abstract
	Acknowledgements
	Introduction
	Morse Theory
	Introduction
	Morse Homology

	Symplectic Fixed Points and Arnold Conjecture
	Introduction
	The Variational Approach
	Action Functional and Moduli Space
	Construction of Floer Homology

	Fredholm Theory
	Fredholm Operator
	The Linearized Operator
	Maslov Index
	Fredholm Index

	Floer Homology
	Transversality
	Compactness and Gluing
	Floer Homology
	Invariance of Floer Homology
	An Isomorphism Theorem
	Further Applications

	Bibliography

