
consider the following model initial-value problem:

Suppose that we want to compute an approximation      to u on the interval (0, T) 
by using a DG method.

hu

first find a partition               of the interval (0,T) and
set                   for n = 0, . . . , N −1. Then we look for a function     which, on the 
interval      , is the polynomial of degree at most     determined by requiring that
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To complete the definition of the DG method, we still need to define the quantity      . 

Since for the ODE,the information travels “from the past into the future”,
it is reasonable to take       as follows:
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hu

This completes the definition of the DG method.

(3)



In this simple example, we already see the main components of the method, 

(i) The use of discontinuous approximations       ,

(ii) The enforcing of the ODE on each interval by means of a Galerkin weak 
formulation, and

(iii) The introduction and suitable definition of the so-called numerical trace     

hu

hu

The simple choice we have made is quite natural for this case and gives
rise to a very good method; however, other choices can also produce 
excellent results. Next, we address the question of how to choose the 
numerical trace



Let us begin with the problem of the consistency of the DG method.

As it is typical for most finite element methods, the method is said to be 
consistent if we can replace the approximate solution     by the exact solution 
u in the weak formulation (2).

We can immediately see that this is true if and only if      = u.u

hu

Next, let us consider the more subtle issue of the stability of the method. 

Our strategy is to begin by obtaining a stability property for the ODE (1) 
which we will then try to enforce for the DG method (2) by a suitable 
definition of the numerical trace      . 

hu



If we multiply the ODE(1) by u and integrate over (0, T), we get the equality

set v = uh in the weak formulation (2), integrate by parts and add over n. We get









Note that the choice               corresponds to the numerical trace we 
chose at the beginning, namely,               

Moreover, in our search for stability, we found, in a very natural way, 
that the numerical trace            can only depend on both traces of             
at t, that is, on             and on                .
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Next, we want to emphasize three important properties of 
the DG methods that do carry over to the multi-dimensional 
case and to all types of problems. 

The first is that the approximate solution of the DG methods 
does not have to satisfy any interelement continuity 
constraint.

As a consequence, the method can be highly parallelizable 
(when dealing with time-dependent hyperbolic problems) .
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The second is that the DG methods are locally conservative.

This is a reflection of the fact that the method enforces the equation element-
by-element and of the use of the numerical trace. In our simple setting, this 
property reads

and is obtained by simply taking v ≣ 1 in the weak formulation (2). This a 
much valued property in computational fluid dynamics.



The third property is the strong relation between the residuals of uh inside the 
intervals and its jumps across inter-interval boundaries. 

To uncover it, let us integrate by parts in (2) to get



hu
Note that now we have two numerical traces, 
namely,       and        , that remain to be defined.

hq



To do that, we begin by finding a stability result for the solution of the original 
equation. To do that, we multiply the first equation by q and integrate over Ω to 
get

Then, we multiply the second equation by u and integrate over Ω to obtain

Adding these two equations, we get

This is the result we sought. Next, we mimic this procedure for the DG method.
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Some properties.
(i) Let us show that to guarantee the existence and uniqueness of the 
approximate solution of the DG methods, the parameter C11 has to be 
greater than zero and the local spaces U(K) and Q(K) must satisfy the 
following compatibility condition:

Indeed, the approximate solution is well defined if and only if, the only 
approximate solution to the problem with f = 0 is the trivial solution.

In that case, our stability identity (page16) gives



which implies that qh = 0, [[uh]] = 0 on Eih, and uh = 0 on ∂Ω, provided that 
C11 > 0.We can now rewrite the first equation defining the method as follows:



(ii) When all the local spaces contain the polynomials of degree k, the 
orders of convergence of the L2-norms of the errors in q and u are k and 
k + 1, respectively.when C11 is of order O(h^ −1).

Example:
Domain: [-1,1]*[-1,1]



c11=1/h,c12=(0,0),c22=0,

u=x^2+y^2+x^2*y+x*y^2+x^2*y^2+x+y+x*y+1;

n=2 (n:degree of legendre polynomial)

nit    u_x error(2-norm)     u_y error(2-norm)    u error(2-norm)  
1       1.798717e-015        2.302556e-015        9.280619e-016    
2       4.484038e-015        4.137567e-015        1.314049e-015    
4       5.829104e-015        5.534534e-015        1.601673e-015    
8       9.283783e-015        8.986503e-015        1.986222e-015    

16      1.280688e-014        1.247376e-014        1.699789e-015    
32      2.081884e-014        2.007377e-014        1.988631e-015 



u=x^2+y^2+x^2*y+x*y^2+x^2*y^2+x+y+x*y+1;

n=1;
c11=1;c12=(0,0);c22=1;

nit    u error(2-norm) 
1     1.324597e+000 
2     3.251126e-001
4     7.934654e-002
8     1.969471e-002
16     4.907614e-003
32     1.224563e-003 

nit          u Order
1            2.0158
2            2.0158
3            2.0158
4            2.0158
5            2.0158



(iii)DG methods are in fact mixed finite element methods. To see this, let 
us begin by noting that the DG approximate solution (qh, uh) can be 
also be characterized as the solution of



which is typical of stabilized mixed finite 
element methods.



those methods are not well defined unless the ‘stabilizing’ form
c(·, ·), usually associated with residuals, is introduced. 

For DG methods, the ‘stabilizing’ form c(·, ·) solely depends on the 
parameter C11 and the jumps across elements of the functions in 
Uh. 

This is why we could think that this form stabilizes the method by 
penalizing the jumps, C11 being the penalization parameter; 



(iv) The methods we have presented are locally conservative. 

As in the hyperbolic case, this is a reflection of the form of the weak 
formulation and the fact that the definition of the numerical traces on the 
face e does not depend on what side of it we are.

More general DG methods define the approximate solution by requiring 
that

for all (r, v) ∈ Q(K) × U(K). 
In this general formulation, the numerical traces uh,K and qh,K can have 
definitions that might depend on what side of the element boundaries we 
are. 
Hence they are not locally conservative. This is the case for the
numerical fluxes in u of the last four schemes in Table 2.



the function α^r([uh]) is a special stabilization term introduced by Bassi and
Rebay [12] and later studied by Brezzi et al. [20]; its stabilization properties 
are equivalent to the one originally presented.
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Consider the Laplace eigenproblem - u= ｕ in  and u=0 in 　　

                             where  is a bounded polyhedral domain in ,d=2,3

Solving the eigenproblem with LDG method

 is the eigenvalue -1 Tof the matrix C-BA (-B )
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