Numerical Partial Differential Equations 1 Homework 2

(Due: Dec. 8, 2005)

1. Problem 1

Chapter 2, page 37, Exercise 2.2 of the "LeVeque notes."
2. Problem 2

Chapter 2, page 37, Exercise 2.3 of the "LeVeque notes."
3. Problem 3

Use (2.10) to write a program to solve the boundary value problem using the direct solver, cg method and inverse matrix:

$$
\begin{gather*}
u^{\prime \prime}(x)=f(x) \quad \text { for }-1<x<1 \tag{1}\\
u(-1)=\alpha, \quad u(1)=\beta . \tag{2}
\end{gather*}
$$

Solve the problem with various grid sizes and the conditions below

- $f(x)=2, \alpha=\beta=1$
- $f(x)=12 x^{2}, \alpha=\beta=1$
- $f(x)=e^{x}, \alpha=e^{-1}, \beta=e^{1}$

Discuss the results.
4. Problem 4

Use (3.10) to write a program to solve the boundary value problem using the direct solver, cg method and inverse matrix

$$
\begin{align*}
\Delta u & =f(x, y) \quad \text { for }(x, y) \in \Omega=[-1,1] \times[-1,1] \tag{3}\\
u_{\partial \Omega} & =g(x, y) \tag{4}
\end{align*}
$$

Solve the problem with various grid sizes and the conditions below

- $f(x)=4, g(x, y)=x^{2}+y^{2}$
- $f(x)=2 e^{x+y}, g(x, y)=e^{x+y}$

Discuss the results.

