# Numerical Partial Differential Equations 1 Homework 2 

(Due: Nov. 29, 2006)
Consider the initial value problem

$$
y^{\prime}=-\mu\left(y-t^{2}\right)+2 t, \quad 0<t<T, \quad y(0)=y_{0} .
$$

Recall that the exact solution is

$$
y(t)=y_{0} e^{-\mu t}+t^{2} .
$$

Set $\mu=520, T=2$ and $y_{0}=4$.
A For this IVP, write (and present) three short MATLAB scripts implementing the following fixed step-size methods:

- the forward Euler method;
- the backward Euler method;
- the trapezoidal rule;

Note that because the right-hand side of the ODE is linear in $y$, you do not need to solve a nonlinear equation to obtain $y_{n+1}$ from $y_{n}$ in the two implicit schemes. Use this fact in your codes.

B Stability The "test equation" for the above ODE is

$$
y^{\prime}=-\mu y .
$$

The results about the regions of absolute stability should give you an indication what the needed step-size to achieve absolute stability is for each of the above methods. Use your MATLAB codes with various time steps (e.g., of the form $2^{-k}$ ) to see whether the results of your numerical experiments correspond to the theory. Present your results in a graphical form. Plot the exact and the numerical solution in the same picture. Also plot the global error $e_{n}$ or its absolute value. Discuss the results.
As part of this problem, run your methods for the same equation on the interval $[a, b]=[1,2]$ with the exact initial condition $y_{0}=y(1)=4 e^{-520}+1$. You should see that even though on this interval $[a, b]$ the solution is essentially $t^{2}$, the forward Euler method still requires a small step-size to get reasonable results. What about the other methods?
(As an illustrative example, you may want to change your codes so that they solve the equation $y^{\prime}=2 t$ on the interval $[1,2]$ with $y_{0}=1$. Observe that in this case the numerical methods do not exhibit any of the instability features.)

## C Order of Convergence

For each of the four methods, establish numerically the order of convergence by computing the maximum of the global errors $\left|e^{n}\right|$ and observing its behavior as $h$ converges to 0 . Do the results correspond to the theory? Present the results in a graphical form or in a table.
For the trapezoidal rule, you should notice that in most of the interval $[0,2]$ the global error is almost negligible. What is the order of the error? Can you explain why?

