Numerical Partial Differential Equations I Homework 3

(Due: Dec. 27, 2006)
Consider the parabolic partial differential equation

$$
\begin{aligned}
u_{t}=a u_{x x}, & 0<x<1, \quad 0<t<1, \\
u(0, t)=u(1, t)=0, & 0<t<1, \\
u(x, 0)=v(x), & 0<x<1,
\end{aligned}
$$

where $a>0$. Recall that if $v(x)=\sin \pi l x$, then the exact solution is

$$
u(x, t)=e^{-\pi^{2} l^{2} a t} \sin \pi l x
$$

Consider uniform refinement, that is, for $h=1 / N$ and $k=1 / M$, we let $x_{j}=j h$ and $t_{n}=n k$. Write a Matlab program to solve the equation with the finite difference schemes (12.5) and (12.6).

- For $h=0.05, k=0.05, a=.1$ and $v(x)=\sin \pi x$, graph the results at $t=1$. Which one is better? Give analytical reasons to support your computational results.
- Next, for $h=0.05, k=0.05$ and $a=2$, graph the results for $v(x)=\sin 10 \pi x$ at $t=.05, .1, .5,1$. Why are the results so poor? Would a different choice or $r=\frac{k}{h^{2}}$ improve the results?
- For $v(x)=\sin \pi x+\sin 10 \pi x$ and $a=1$, suppose that we want a numerical solution whose relative error is about 10^{-4}, how do you choose k and h for (12.5) and (12.6)? What if we want the error is about 10^{-6} ?

