Numerical Partial Differential Equations I Homework 4

(Due: Jan. 24, 2006)
Consider the hyperbolic partial differential equation

$$
\begin{array}{cl}
u_{t}+c u_{x}=0, & -1<x<1, \quad 0<t<.5 \tag{1}\\
u(-1, t)=b(t), & 0<t<.5 \\
u(x, 0)=v(x), & -1<x<1
\end{array}
$$

where $c>0$. Recall that the exact solution to (1) is given by

$$
u(x, t)=\left\{\begin{array}{cc}
b\left(t-\frac{x}{c}\right) & x \leq c t-1 \\
v(x-c t) & x>c t-1
\end{array}\right.
$$

Consider uniform refinement, that is, for $h=1 / N$ and $k=1 / M$, we let $x_{j}=j h$ and $t_{n}=n k$. Write a Matlab program to solve the equation with the Lax-Friedrichs method (13.5), Lax-Wendroff (13.17) method and Upwind method (13.22, 13.23).

- Consider the problem (1) with $c=0.5, b(t)=0$, and

$$
v(x)=\left\{\begin{array}{cc}
(x-0.5)^{2}(x+0.5)^{2} \cdot 2^{4} & -0.5 \leq x \leq 0.5 \\
0 & \text { otherwise }
\end{array}\right.
$$

Study the performance (stability and accuracy) of the schemes, compare the computed results with the exact solution and discuss the difference.

- Consider the problem (1) with $c=0.5, b(t)=0$, and

$$
v(x)= \begin{cases}0 & x \leq 0 \\ 1 & x>0\end{cases}
$$

Study the performance (stability and accuracy) of the schemes, compare the computed results with the exact solution and discuss the difference.

