- Theorem 10.5.1 The Chain Rule (I)

If $z=f(x(t), y(t))$, where $x(t)$ and $y(t)$ are differentiable and $f(x, y)$ is a differentiable function of x and y, then

$$
\frac{d z}{d t}=\frac{d}{d t}[f(x(t), y(t))]=\frac{\partial f}{\partial x}(x(t), y(t)) \frac{d x}{d t}+\frac{\partial f}{\partial y}(x(t), y(t)) \frac{d y}{d t} .
$$

- Theorem 10.5.2 Chain Rule (II)

Suppose that $z=f(x, y)$, where f is a differentiable function of x and y and where $x=x(s, t)$ and $y=y(s, t)$ both have first-order partial derivatives. Then we have the chain rules:

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

- Theorem 10.7.2 Second Derivatives Test

Suppose that $f(x, y)$ has continuous second-order partial derivatives in some open disk containing the point (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Define the discriminant D for the point (a, b) by

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} .
$$

(1) If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a local minimum at (a, b).
(2) If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a local maximum at (a, b).
(3) If $D(a, b)<0$, then f has a saddle point at (a, b).
(4) If $D(a, b)=0$, then no conclusion can be drawn.

- Theorem 10.7.3 Extreme Value Theorem (I)

Suppose that $f(x, y)$ is continuous on the closed and bounded region $R \subset$ \mathbb{R}^{2}. Then f has both an absolute maximum and an absolute minimum on R. Further, the absolute extrema must occur at either a critical point in R or on the boundary of R.

- Theorem 10.8.1 Method of Lagrange Multiplier

Suppose that $f(x, y)$ and $g(x, y)$ are functions with continuous first partial derivatives and $\nabla g(x, y) \neq \mathbf{0}$ on the surface $g(x, y)=0$. Suppose that either
(1) the minimum value of $f(x, y)$ subject to the constraint $g(x, y)=0$ occurs at $\left(x_{0}, y_{0}\right)$; or
(2) the maximum value of $f(x, y)$ subject to the constraint $g(x, y)=0$ occurs at $\left(x_{0}, y_{0}\right)$.
Then $\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}, z_{0}\right)$ for some constant λ.

- Definition 11.8.1 Jacobian of a transformation
$\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial u}\end{array}\right|$
- Theorem 11.8.1

Suppose that the region S in the $u v$-plane is mapped onto the region R in the $x y$-plane by the one-to-one transformation T defined by $x=g(u, v)$ and $y=h(u, v)$, where g and h have continuous first partial derivatives on S. If f is continuous on R and the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ is nonzero on S, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

