- Taylor Polynomial
 - Given a smooth function f(x). The Taylor Series expansion for f is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$

The Taylor Polynomial of degree n, denoted by $P_n(x)$, expanded about x = c is given by

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$$

• Taylor's Theorem Suppose that f has derivatives of all orders in the interval (c - r, c + r), for some r > 0 and that $\lim_{n \to \infty} R_n(x) = 0$, for all x in (c - r, c + r). Then, the Taylor series for f expanded about x = c converges to f(x), that is,

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k,$$

Test When to use Conclusions $\sum_{k=0}^{\infty} ar^k$ Converges to $\frac{a}{1-r}$ if |r| < 1; Geometric Series diverges if $|r| \ge 1$. If $\lim_{k \to \infty} a_k \neq 0$, the series diverges. kth-Term Test All series $\sum_{k=1}^{\infty} a_k$ and $\int_1^{\infty} f(x) dx$ $\sum_{k=1}^{\infty} a_k \text{ where } f(k) = a_k \text{ and } f \text{ is continuous, decreasing and } f(x) \ge 0$ Integral Test both converge or both diverge. $\sum_{k=1}^{\infty} \frac{1}{k^p}$ $\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k, \text{ where } 0 \le a_k \le b_k$ *p*-series Converges for p > 1; diverges for $p \le 1$. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges. **Comparison Test** $\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k, \text{ where}$ $a_k, b_k > 0 \text{ and } \lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$ $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ Limit Comparison Test both converge or both diverge. $\sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ where } a_k > 0 \text{ for all } k$ Alternating Series Test If $\lim_{k \to \infty} a_k = 0$ and $a_{k+1} \le a_k$ for all k, then the series converges. If $\sum_{\substack{k=1\\k=1}}^{\infty} |a_k|$ converges, then $\sum_{\substack{k=1\\k=1}}^{\infty} a_k$ converges (absolutely). Absolute Convergence Series with some positive and some negative terms (including alternating series) For $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = L$, Ratio Test Any series (especially those involving exponentials and/or factorials) if L < 1, $\sum_{k=1}^{\infty} a_k$ converges absolutely if L > 1, $\sum_{k=1}^{\infty} a_k$ diverges, if L = 1, no conclusion.

for all x in (c - r, c + r).