- Taylor Polynomial

Given a smooth function $f(x)$. The Taylor Series expansion for f is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

The Taylor Polynomial of degree n , denoted by $P_{n}(x)$, expanded about $x=c$ is given by

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

- Taylor's Theorem Suppose that f has derivatives of all orders in the interval $(c-r, c+r)$, for some $r>0$ and that $\lim _{n \rightarrow \infty} R_{n}(x)=0$, for all x in $(c-r, c+r)$. Then, the Taylor series for f expanded about $x=c$ converges to $f(x)$, that is,

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k},
$$

for all x in $(c-r, c+r)$.

Test	When to use	Conclusions
Geometric Series	$\sum_{k=0}^{\infty} a r^{k}$	Converges to $\frac{a}{1-r}$ if $\|r\|<1$; diverges if $\|r\| \geq 1$.
k th-Term Test	All series	If $\lim _{k \rightarrow \infty} a_{k} \neq 0$, the series diverges.
Integral Test	$\sum_{k=1}^{\infty} a_{k}$ where $f(k)=a_{k}$ and f is continuous, decreasing and $f(x) \geq 0$	$\sum_{k=1}^{\infty} a_{k} \text { and } \int_{1}^{\infty} f(x) d x$ both converge or both diverge.
p-series	$\sum_{k=1}^{\infty} \frac{1}{k^{p}}$	Converges for $p>1$; diverges for $p \leq 1$.
Comparison Test	$\sum_{k=1}^{\infty} a_{k} \text { and } \sum_{k=1}^{\infty} b_{k}, \text { where } 0 \leq a_{k} \leq b_{k}$	If $\sum_{k=1}^{\infty} b_{k}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges. If $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty} b_{k}$ diverges.
Limit Comparison Test	$\begin{aligned} & \sum_{k=1}^{\infty} a_{k} \text { and } \sum_{k=1}^{\infty} b_{k}, \text { where } \\ & a_{k}, b_{k}>0 \text { and } \lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L>0 \end{aligned}$	$\sum_{k=1}^{\infty} a_{k} \text { and } \sum_{k=1}^{\infty} b_{k}$ both converge or both diverge.
Alternating Series Test	$\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ where $a_{k}>0$ for all k	If $\lim _{k \rightarrow \infty} a_{k}=0$ and $a_{k+1} \leq a_{k}$ for all k, then the series converges.
Absolute Convergence	Series with some positive and some negative terms (including alternating series)	If $\sum_{k=1}^{\infty}\left\|a_{k}\right\|$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges (absolutely).
Ratio Test	Any series (especially those involving exponentials and/or factorials)	For $\lim _{k \rightarrow \infty}\left\|\frac{a_{k+1}}{a_{k}}\right\|=L$, if $L<1, \sum_{k=1}^{\infty} a_{k}$ converges absolutely if $L>1, \sum_{k=1}^{\infty} a_{k}$ diverges, if $L=1$, no conclusion.

