Calculus II

Chap 4: Sec. 4.10.

1. Evaluate the given integral
(a) $\int_{-\infty}^{\infty} \frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} d x$
(b) $\int_{-\infty}^{\infty} x^{3} d x$
(c) $\lim _{R \rightarrow \infty} \int_{-R}^{R} x^{3} d x$
2. Determine whether the integral converges or diverges:
(a) $\int_{0}^{1} x^{-1 / 3} d x$
(b) $\int_{0}^{1} x^{-4 / 3} d x$
(c) $\int_{1}^{\infty} x^{-1 / 3} d x$
(d) $\int_{-1}^{1} x^{-1 / 3} d x$

Chap 5: Sec. 5.3-Sec. 5.4.

1. Set up a definite integral for the arc length of an ellipse $x^{2}+4 y^{2}=4$.
2. Set up the integral for the surface area of the surface of revolution. $y=e^{x}, 0 \leq x \leq 1$, revolved about x-axis.
3. (i) At time t , a particle has position $x(t)=1-\cos t, \quad y(t)=t-\sin t$ Find the total distance traveled from $t=0$ to $t=2 \pi$. Find the speed of the particle at $t=\pi$.
(ii) Find the area of the surface generated by revolving the curve $y=\cosh x, x \in[0, \ln 2]$ about the x -axis.

Chap 6: Sec. 6.1-Sec. 6.3.

1. Two years ago, there were 4 grams of a radioactive substance. Now there are 3 grams. How much was there 10 years ago?
2. Find the size of permanent endowment needed to generate an annual $\$ 2,000$ forever at 10% (annual) interest compounded continuously.
3. Solve the IVP, explicitly, if possible $y^{\prime}=\frac{x-1}{y^{2}}, y(0)=2$.

- Sec. 7.1:

Find the limit of a sequence. Determine the convergence of a sequence. Examples:2-12. Practice Problems:11,31,43,53,65.

- Sec. 7.2:

Convergence and divergence of a series; geometric series; p-series; k-th term test for divergence. ExamplesExamples: 1-7.

Practice Problems:1, 7, 17, 37, 39, 41.

- Sec. 7.3:

Integral Test; Comparison Test; Limit Comparison Test.
Examples: 1-2,5-9.
Practice Problems:1, 11, 37, 41, 45, 57.

- Sec. 7.4:

Alternating Series Test;
Examples: 1-4.
Practice Problems:1, 11, 41, 43.

- Sec. 7.5:

Absolute Convergence and Conditional Convergence; Ratio Test.
Examples: 1-7.
Practice Problems: 7, 13, 25, 35, (40).

- Sec. 7.6:

Interval and Radius of Convergence; Term-by-term differentiation and integration. Examples: 1-6.

Practice Problems: 1, 3, 11, 21, 39.

- Sec. 7.7:

Taylor's Theorem; Derive a Taylor series or polynomial; Find new Taylor series from old ones. Examples: 1-3,8.

Practice Problems: 1, 5, 33, 41, (47).

- Sec. 7.8:

Use Taylor polynomials to approximate a function, to find the limit and to approximate an integral. Examples: 1-5. Practice Problems: 7, 11, 13, 15.

