Calculus I

Chap 1: Sec. 1.2-Sec. 1.5:

1. Let
$$f(x) = \begin{cases} |x+2| & \text{for } x \leq 0; \\ 2+x^2 & \text{for } 0 < x < 2; \\ x^3 & \text{for } x \geq 2 \end{cases}$$
. Find (a) $\lim_{x \to 0^-} f(x)$, (b) $\lim_{x \to 0^+} f(x)$, (c) $\lim_{x \to 2^-} f(x)$, (d) $\lim_{x \to 2^+} f(x)$,

Practice problems

(e) $\lim_{x\to 0} f(x)$, (f) $\lim_{x\to 2} f(x)$

Ans: (a) 2 (b) 2 (c) 6 (d) 8 (e) 2 (f) DNE

- 2. Compute $\lim_{x\to 0} \frac{1-\cos 4x}{9x^2}$ Ans: 8/9
- 3. Let $f(x) = \begin{cases} cx 2 & \text{for } x \leq 2; \\ cx^2 + 2 & \text{for } x > 2 \end{cases}$ Find c such that f(x) is continuous.
- 4. Determine the intervals on which $f(x) = \ln(1-x^2)$ is continuous. Ans: $1-x^2 > 0$ or (-1,1)
- 5. Compute

 - (i) $\lim_{x\to 0} \frac{\sqrt{x+9}-3}{\frac{g}{2x}}$ (ii) $\lim_{x\to 1^-} \frac{g}{x^2-1}$ (iii) $\lim_{x\to \infty} \frac{x+\sin x}{4x+99}$

Ans: (i) 6 (ii) $-\infty$ (iii) 1/4

Chap 2: Sec. 2.3-Sec. 2.9:

1.
$$\frac{d}{dx} \left[\frac{x^2 - x}{3x + 1} \right] = ?$$

- 2. Find the tangent line to the curve $y = x^3 4x^2 + 2x + 1$ at the point (1,0).
- 3. (a) Let $y = \ln \sqrt{\frac{3x+1}{5x+2}}$. Find $\frac{dy}{dx}$. Ans: $\frac{(3x-1)(x+1)}{(3x+1)^2}$ (b) Let $y = e^{x^2} \sin(x^2 + x + 1) \cdot \sqrt{3x+1}/(x^2-1)$. Find $\frac{dy}{dx}$.

Hint: Take In on bouth side.

- 4. The equation $7x^2y^3 5xy^2 4y = 7$ defines y implicitly as a function of x. Find $\frac{dy}{dx}$. Ans: $\frac{14xy^3 5y^2}{4 + 10xy 21x^2y^2}$
- 5. Find the detivative of $f(x) = x^{2x}$ Ans: $2(\ln x + 1)x^{2x}$
- 6. Compute $\frac{d}{dx}\cos^{-1}(2x^3)$ Ans: $\frac{-6x^2}{\sqrt{1-(2x^3)^2}}$
- 7. Determine if $f(x) = x^7 + 2x^3 2006$ is increasing, decreasing or neither. Prove f(x) = 0 has exactly one solution. Hint: Sec. 2.9 example 9.1

Chap 3: Sec. 3.1-Sec. 3.8:

- 1. Estimate tan $((\pi/4) + 0.05)$ by the method of linear approximation (i.e., by differentials). Ans: 1+2*(0.05) =1.1
- 2. Compute $\lim_{x\to 1^+} \frac{\ln x}{(x-1)^2}$ Ans: ∞
- 3. Find the asymptotes of
 - (i) $f(x) = \frac{(3x-1)^2}{9x^2-4}$. Ans: V:x = 2/3, x = -2/3; H:y = 1(ii) $f(x) = \frac{(3x-1)^2}{9x^2-1}$. Ans: V:x = -1/3; H:y = 1(iii) $f(x) = \frac{(3x-1)^2}{x-1}$ Ans: V:x = 1; H:none; S:y = 9x + 3.
- 4. Let $f(x) = 2x^3 3x^2 12x$. Find the relative extrema of f(x). Ans: local max at x = -1; local min at x=2; no abs. max/min

- 5. Find the absolute maximum and minimum values of the function $f(x) = 2x^3 9x^2 + 12x$ over the interval [0,2]. Ans: Abs max: f(1) = 5; abs min: f(0) = 0
- 6. Determine the concavity of $f(x) = 4x^3 x^4$. Ans: Concave up: $(-\infty, 0) \cup (2, \infty)$; Concave down: (0, 2)
- 7. If $300 \text{ } cm^2$ of material is available to make a box with square base and an open top, find the largest possible volume of the box. Explain why your answer is the absolute maximum.
- 8. Sketch the graph of the continuous function f that satisfies the conditions:

$$f''(x) > 0$$
 if $|x| > 2$, $f''(x) < 0$ if $|x| < 2$;
 $f'(0) = 0$, $f'(x) > 0$, if $x < 0$, $f'(x) < 0$, if $x > 0$;
 $f(0) = 1$, $f(2) = \frac{1}{2}$, $f(x) > 0$ for all x , and f is and even function.

Ans: The graph looks like $e^{-x^2/8}$

- 9. An automobile dealer is selling cars at a price of \$12,000. The demand function is $D(p) = 2(15 0.001p)^2$, where p is the price of a car. Should the dealer raise or lower the price to increase the revenue? Hint: Find the detivative of the revenue function, $R(p) = p \cdot D(p)$
- 10. Compute:
 - (i) $\lim_{x\to 0} (\frac{1}{\ln(x+1)} \frac{1}{x})$
 - (ii) $\lim_{x\to 0^+} (\cos x)^{1/x}$
 - (iii) $\lim_{x\to\infty} (1+\frac{1}{x})^x$

Ans (i) Sec 3.2 example 2.7 (ii) Sec 3.2 exercise 38 (iii) e

Chap 4: Sec. 4.2-Sec. 4.7, Sec. 4.10.

- 1. Let f(x) = x + 1
 - (a) Divide the interval [0,5] into n equal parts, and using right endpoints find an expression for the Riemann

Hint: $1 + 2 + ... + n = \frac{n(n+1)}{2}$

- (b) Using the answer you got from part(a), calculate $\lim_{n\to\infty} R_n$ (without using antiderivatives).
- 2. Find the derivatives of the following functions. It is not necessary to simplify your answer:
 - (a) $f(x) = ((x^2 + 1)^3 + 1)^4$

(b) $G(x) = \int_0^{x^2} \sqrt{1 + t^4} dt$ Ans: (a) $4((x^2 + 1)^3 + 1)^3 \cdot 3 \cdot (x^2 + 1)^2 \cdot (2x)$ (b) $2x \cdot \sqrt{1 + x^8}$

3. Let f be continuous and define F by

$$F(x) = \int_0^x [t^2 \int_1^t f(u) \, du] \, dt.$$

Find F'(x) and F''(x). Ans: $F'(x) = x^2 \int_1^x f(u) \, du$, $F''(x) = 2x \int_1^x f(u) \, du + x^2 f(x)$

- 4. Evaluate the given integral

 - (i) $\int x(x+1)^9 dx$, Hint:u = x+1(ii) $\int \frac{\cos \theta}{\sin^2 \theta 2\sin \theta 8} d\theta$. Hint $u = \cos \theta$ (iii) $\int \frac{dx}{e^x \sqrt{4+e^{2x}}}$. Hint: $u = e^x$, $u = 2\tan \theta$ (iv) $\int \frac{\ln x}{x\sqrt{1+\ln x}} dx$, Hint: $u = \ln x$

 - (v) $\int \frac{x^3}{\sqrt{x^2+1}} dx$. Hint: $x = \tan \theta$ (vi) $\int_{-\infty}^{\infty} \frac{e^{-x}}{(1+e^{-x})^2} dx$ Ans: 1

- 5. Evaluate the given integral
 - (i) $\int \sec^3 t \, dt$
 - (ii) $\int \sec t \, dt$

Ans:(i) $(-\ln(\cos t/2 - \sin t/2) + \ln(\cos t/2 + \sin t/2) + \sec t \tan t)/2 + C$ (ii) $\ln|\sec t + \tan t| + C$

- 6. (a) $\int_{-\infty}^{\infty} x^3 dx$ (b) $\lim_{R\to\infty} \int_{-R}^{R} x^3 dx$ Ans: (a) DIV (b) 0
- 7. Determine whether the integral converges or diverges:

 - (i) $\int_0^1 x^{-1/3} dx$ (ii) $\int_0^1 x^{-4/3} dx$ (iii) $\int_1^\infty x^{-4/3} dx$ (iii) $\int_1^\infty x^{-1/3} dx$ (iv) $\int_{-1}^1 x^{-1/3} dx$ Ans: (i) 3/2 (ii) DIV (iii) DIV (iv) 0

Chap 5: Sec. 5.1-Sec. 5.6.

- 1. Find the region bounded by the parabola $x = 2 y^2$ and the line y = x. Ans: $\int_{-2}^{1} (2 - y^2) - y \, dy = \dots$
- 2. A solid is formed by revolving the circular disk $(x-5)^2+y^2=4$ about the y-axis. Set up, but do not evaluate, a definite integral which give the volume of the solid. Ans: $\int_{-2}^{2} \pi \left[(5 + \sqrt{4 - y^2})^2 - (5 - \sqrt{4 - y^2})^2 \right] dy$ or $\int_{3}^{7} 2\pi x \left[\sqrt{4 - (x - 5)^2} - (-\sqrt{4 - (x - 5)^2}) \right] dx$
- 3. Let Ω be the region bounded by $y = \sec x$, x = 0, $x = \frac{\pi}{4}$ and y = 0. Find integrals represent the volume of the solids generated by Ω about (a) x-axis, (b) y-axis, (c) y = -1, (d) x = -1. (Don't evaluate the integrals) Ans: Midterm 2
- 4. Set up a definite integral for the arc length of an ellipse $x^2 + 4y^2 = 4$. Ans: $4 \int_0^2 \sqrt{1 + (-\frac{x}{4\sqrt{1-x^2/4}})^2} dx$ or $4 \int_{0}^{\pi/2} \sqrt{(-2\sin\theta)^2 + (\cos\theta)^2} d\theta$
- 5. Set up the integral for the surface area of the surface of revolution. $y = e^x$, $0 \le x \le 1$, revolved about x-axis. Ans: $S = \int_0^1 2\pi e^x \sqrt{1 + (e^x)^2} dx$
- 6. (i) At time t, a particle has position $x(t) = 1 \cos t$, $y(t) = t \sin t$ Find the total distance traveled from t=0 to $t=2\pi$. Find the speed of the particle at $t=\pi$. Ans: $\int_0^{2\pi} \sqrt{(\sin t)^2 + (1 - \cos t)^2} dt$, speed at $t = \pi$ is 2
 - (ii) Find the area of the surface generated by revolving the curve $y=\cosh x,\,x\in[0,\ln 2]$ about the x-axis. Ans: $S=\int_0^{\ln 2}2\pi\cosh x\sqrt{1+(\sinh x)^2}\,dx$

Chap 6: Sec. 6.1-Sec. 6.5.

- 1. Two years ago, there were 4 grams of a radioactive substance. Now there are 3 grams. How much was there 10 years ago? Ans: $\frac{4^5}{3^4}$
- 2. Find the size of permanent endowment needed to generate an annual \$2,000 forever at 10% (annual) interest compounded continuously. Ans: $2000 \cdot e^{-0.1}$
- 3. Solve the IVP, explicitly, if possible $y' = \frac{x-1}{y^2}$, y(0) = 2. Ans: $y = (\frac{3}{2}x^2 3x + 8)^{1/3}$