Final of Calculus 1/15/2007

1. Show your work to get credits!
 2. No Calculator!
 3. No Cheating!

(1) Find the derivatives
(a) $f(x)=\ln \left(x \sqrt{x^{2}+1}\right)$,
(b) $f(x)=3^{x^{2}+x}$.
(2) Find the indefinite integral
(a) $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$
(b) $\int(2 x+1)^{5} d x$
(c) $\int \frac{1}{x \ln x} d x$
(d) $\int \frac{x}{\sqrt{3 x+1}} d x$.
(3) Find the definite integral
(a) $\int_{0}^{1} x e^{x^{2}} d x$
(b) $\int_{1}^{2} \frac{1+\ln x}{x} d x$.
(4) Evaluate $\int_{0}^{3}|x-1| d x$
(5) Find the area of the region bounded by the two graphs of functions $f(x)=(x-1)^{3}$ and $g(x)=x-1$.
(6) Find the consumer and producer surpluses if the demand function is given by $p_{1}(x)=100-x^{2}$ and the supply function is given by $p_{2}(x)=70+x$.
(7) The upper half of the ellipse

$$
16 x^{2}+25 y^{2}=400
$$

is revolved about the x-axis to form a football like spheroid. Find the volume of the spheroid.
(8) The probability of recall in an experiment is found to be

$$
P(a \leq x \leq b)=\int_{a}^{b} \frac{105}{16} x^{2} \sqrt{1-x} d x
$$

where x represents the percent of recall. $(0 \leq x \leq 1)$
Find the probablity that a randomly chosen individual will recall 80% of the material.
(9) Sketch the graph of the function

$$
f(x)=\frac{x^{3}}{x^{3}-1} .
$$

Find the intercepts, relative extrema, points of inflection, and asymptotes if they exist.

