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PRELIMINARIES

C H A P T E R

0

One of the most famous of all scientific legends has the 16th-century scientist
Galileo dropping a wood ball and a lead ball simultaneously from the Leaning
Tower of Pisa. In this story, the balls hit the ground at the same time, proving
that the acceleration due to gravity is the same for all objects. As we now know,
if Galileo had dropped the balls in a vacuum they would have hit the ground at
the same time. In fact, Apollo 15 Commander Dave Scott dropped a feather and
a hammer in the vacuum of the moon. Just as the theory predicts, the feather and
hammer fell at exactly the same rate.

Back in Italy, Galileo had to cope with the reality of air resistance. In fact, one reason that many
historians don’t believe that the Leaning Tower experiment ever occurred is that air resistance would
cause the heavier lead ball to reach the ground significantly before the lighter wood ball. Whether or not
the legend is true, Galileo made several vital contributions to our understanding of how objects move
through the air. His most important experiments in this area were precise measurements of balls rolling
down inclined planes. The slight slope of his inclined planes meant that the balls rolled slowly, reducing
the effect of air resistance. This allowed Galileo to compute time accurately (remember, this was before
clocks were invented). In one set of experiments, he set up his inclined plane on a platform a specified
height above the floor, rolled a ball down the inclined plane and off the edge of the platform. Having
dipped the balls in ink, Galileo could see where the balls landed and then measure the horizontal distance
traveled. His data (the units are punti) and a plot of the data are shown below.
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Throughout your study of calculus, you will look at relationships between variables in different
forms. Here, we have both a numerical representation and a graphical representation of the same exper-
iment. Galileo was also interested in an algebraic representation. That is, he wanted a formula by which
he could compute the y-value given any x-value. In this chapter, we will examine a variety of (mostly
familiar) functions and their graphs. Knowing these graphs, we can say that Galileo’s data look like points
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on the graph of a quadratic function. However, it also looks like data from a cubic function
or an exponential function. We will consider techniques to help determine which of these
functions fits the data best. One simple function that provides a nice fit is y = 0.00044x2 +
26. (See the graph above.) Ultimately, Galileo wanted a theoretical explanation of why
such a formula would work. It will take several chapters for us to get there, but the theory
of moving objects is one of the great success stories of calculus. Moreover, the study of
calculus provides us with numerous explanations of the way things in our world work.

0.1 POLYNOMIALS AND RATIONAL FUNCTIONS

The Real Number System
Although mathematics is far more than just a study of numbers, our journey into calculus
begins with the real number system. You might think that this is a fairly mundane starting
place. After all, you probably mastered the properties of the real numbers a long time ago.
Nevertheless, we want to give you the opportunity to brush up on those properties that are
of particular interest for calculus. A solid foundation here will help you to grasp the many
subtleties you will encounter in your study of the calculus.

The most familiar set of numbers is the set of integers. The integers consist of the whole
numbers and their additive inverses: 0, ±1, ±2, ±3, . . . . A rational number is any number

that can be written in the form
p

q
, where p and q are integers and q �= 0. For example, 2

3 , − 7
3

and 27
125 are all rational numbers. Notice that every integer n is also a rational number, since

we can write it as the quotient of two integers: n = n

1
.

The irrational numbers are all those real numbers that cannot be written in the form
p

q
,

where p and q are integers. The irrationals include the very important numbers
√

2, π and
e. You may recall that rational numbers have a decimal expansion that either terminates or
repeats. For instance, 1

2 = 0.5, 1
3 = 0.33333, 1

8 = 0.125 and 1
6 = 0.166666 are all rational

numbers. By contrast, irrational numbers have decimal expansions that do not repeat or
terminate. For instance, we have the decimal expansions√

2 = 1.4142135623 . . . ,

π = 3.1415926535 . . .

and

e = 2.7182818284 . . .

for the irrational numbers
√

2, π and e.
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FIGURE 0.1
The real line.

We usually picture the real numbers arranged along a number line as displayed in
Figure 0.1 (the real line), with center at 0 and extending off forever in both the positive
and negative directions. We denote the set of real numbers by the symbol R. The notation
x ∈ R indicates that x is an element of the set of real numbers. (In other words, x is a real
number.)

Recall that for real numbers a and b, where a < b, we define the closed interval [a, b]
to be the set of numbers between a and b, including a and b (the endpoints), that is,

[a, b] = {x ∈ R | a ≤ x ≤ b},
as illustrated in Figure 0.2, where we have used the solid circles to indicate that a and b are
included in [a, b].

a b

FIGURE 0.2
A closed interval.

a b

FIGURE 0.3
An open interval.

Similarly, we define the open interval (a, b) to be the set of numbers between a and
b, but not including the endpoints a and b, that is,

(a, b) = {x ∈ R | a < x < b},
as illustrated in Figure 0.3, where we have used the open circles to indicate that a and b are
not included in (a, b).

Equations of Lines
By law, the federal government must conduct a nationwide census every 10 years to deter-
mine the population. This is done for a variety of reasons, notably so that the government
can track the growth of various segments of the population for the purposes of planning.
Population data for several recent decades are shown in the accompanying table.

Year U.S. population

1960 179,323,175

1970 203,302,031

1980 226,542,203

1990 248,709,873

x y

0 179

10 203

20 227

30 249

One difficulty with analyzing this data is that the numbers are so large. This problem
is remedied by transforming the data. We can simplify the year data by defining x to be
the number of years since 1960. Then, 1960 corresponds to x = 0, 1970 corresponds to
x = 10, and so on. The population data can be simplified by rounding the numbers off to
the nearest million. The simplified data are shown in the accompanying table and a scatter
plot of these data points is shown in Figure 0.4.
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FIGURE 0.4
Population data.

Asked to describe the pattern in Figure 0.4, most people would say that the points
appear to form a straight line. (Use a ruler to see if you agree.) To determine whether the
points are, in fact, on the same line (such points are called colinear), we might consider
the population growth in each of the indicated decades. From 1960 to 1970, the growth was
24 million. (That is, to move from the first point to the second, you increase x by 10 and
increase y by 24.) Likewise, from 1970 to 1980, the growth was 24 million. (So, to move
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from the second point to the third point, you again increase x by 10 and y by 24.) However,
from 1980 to 1990, the growth was only 22 million. (That is, to move from the third point
to the fourth point, while x again increases by 10, y increases by only 22.) Since the rate of
growth is not constant, this says that the data points do not fall on a line. Notice that to stay
on the same line, y would had to have increased by 24 again. (Why is that?) The preceding
argument involves the familiar concept of slope.

DEFINITION 1.1

For x1 �= x2, the slope of the straight line through the points (x1, y1) and (x2, y2) is
the number

m = y2 − y1

x2 − x1
. (1.1)

When x1 = x2, the line through (x1, y1) and (x2, y2) is vertical and the slope is undefined.

We often describe slope as “the change in y divided by the change in x ,” written
�y

�x
,

or more simply as
Rise

Run
(see Figure 0.5a).
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FIGURE 0.5a
Slope.

FIGURE 0.5b
Similar triangles and slope.

You should observe that the slope of a straight line is the same no matter which two points
on the line you select. Referring to Figure 0.5b (where the line has positive slope), notice
that for any four points A, B, D and E on the line, the two right triangles �ABC and
�DE F are similar. Recall that for similar triangles, the ratios of corresponding sides must
be the same. In this case, this says that

�y

�x
= �y′

�x ′

and so, the slope is the same no matter which two points on the line are selected. Furthermore,
a line is the only curve with constant slope. Notice that a line is horizontal if and only if
its slope is zero.
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EXAMPLE 1.1 Finding the Slope of a Line

Find the slope of the line through the points (4, 3) and (2, 5).

Solution From (1.1), we get

m = y2 − y1

x2 − x1
= 5 − 3

2 − 4
= 2

−2
= −1.

�

EXAMPLE 1.2 Using the Slope to Determine if Points Are Colinear

Use slopes to determine whether or not the points (1, 2), (3, 10), and (4, 14) are colinear.

Solution First, notice that the slope of the line joining (1, 2) and (3, 10) is

m1 = y2 − y1

x2 − x1
= 10 − 2

3 − 1
= 8

2
= 4.

Similarly, the slope through the line joining (3, 10) and (4, 14) is

m2 = y2 − y1

x2 − x1
= 14 − 10

4 − 3
= 4.

Since the slopes are the same, the points must be colinear. �

Recall that if you know the slope and a point through which the line must pass, you have
enough information to graph the line. The easiest way to graph a line is to plot two points
and then draw the line through them. In this case, you only need to find a second point.

EXAMPLE 1.3 Graphing a Line

If a line passes through the point (2, 1) with slope 2
3 , find a second point on the line and

then graph the line.

Solution Since slope is given by m = y2 − y1

x2 − x1
, we take m = 2

3 , y1 = 1 and x1 = 2, to

obtain
2

3
= y2 − 1

x2 − 2
.

You are free to choose the x-coordinate of the second point. For instance, to find the point
at x2 = 5, substitute this into the equation, and solve. From

2

3
= y2 − 1

5 − 2
= y2 − 1

3
,
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FIGURE 0.6a
Graph of a straight line.
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FIGURE 0.6b
Using slope to find a second point.

we get 2 = y2 − 1 or y2 = 3. A second point is then (5, 3). The graph of the line is shown
in Figure 0.6a. An alternative method for finding a second point is to use the slope

m = 2

3
= �y

�x
.

The slope of 2
3 says that if we move three units to the right, we must move two units up

to stay on the line, as illustrated in Figure 0.6b. �

In example 1.3, note that the choice of x = 5 was entirely arbitrary; you can choose
any x-value you want to find a second point. Further, since x can be any real number, you
can leave x as a variable and write out an equation satisfied by any point (x, y) on the line.
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In the general case of the line through the point (x0, y0) with slope m, we have from (1.1)
that

m = y − y0

x − x0
. (1.2)

Multiplying both sides of (1.2) by (x − x0), we get

y − y0 = m(x − x0)

or

y = m(x − x0) + y0. (1.3)Point-slope form of a line

Equation (1.3) is called the point-slope form of the line. With this, you can find an equation
of any line.

EXAMPLE 1.4 Finding the Equation of a Line Given Two Points

Find an equation of the line through the points (3, 1) and (4, −1) and graph the line.

Solution From (1.1), the slope is

m = −1 − 1

4 − 3
= −2

1
= −2.

Using (1.3) with slope m = −2, x-coordinate x0 = 3 and y-coordinate y0 = 1, we get
the equation of the line:

y = −2(x − 3) + 1. (1.4)
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FIGURE 0.7
y = −2(x − 3) + 1.

To graph the line, plot the points (3, 1) and (4, −1), and you can easily draw the line seen
in Figure 0.7. �

In example 1.4, you may be tempted to simplify the expression for y given in (1.4). As it
turns out, the point-slope form of the equation is often the most convenient to work with. So,
we will typically not ask you to rewrite this expression in other forms. At times, a form of the
equation called the slope-intercept form is more convenient. This is an equation of the form

y = mx + b,

where m is the slope and b is the y-intercept (i.e., the place where the graph crosses the
y-axis). In example 1.4, you simply multiply out (1.4) to get y = −2x + 6 + 1 or

y = −2x + 7.

As you can see from Figure 0.7, the graph crosses the y-axis at y = 7.
Theorem 1.1 presents a familiar result on parallel and perpendicular lines.

THEOREM 1.1

Two (nonvertical) lines are parallel if they have the same slope. Further, any
two vertical lines are parallel. Two (nonvertical) lines of slope m1 and m2 are
perpendicular whenever the product of their slopes is −1 (i.e., m1 · m2 = −1). Also,
any vertical line and any horizontal line are perpendicular.

Since we can read the slope from the equation of a line, it’s a simple matter to determine
when two lines are parallel or perpendicular. We illustrate this in examples 1.5 and 1.6.
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EXAMPLE 1.5 Finding the Equation of a Parallel Line

Find an equation of the line parallel to y = 3x − 2 and through the point (−1, 3).
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42�2�4

FIGURE 0.8
Parallel lines.

Solution It’s easy to read the slope from the equation: m = 3. The equation of the
parallel line is then

y = 3[x − (−1)] + 3

or simply y = 3(x + 1) + 3. We show a graph of both lines in Figure 0.8. �

EXAMPLE 1.6 Finding the Equation of a Perpendicular Line

Find an equation of the line perpendicular to y = −2x + 4 and intersecting the line at
the point (1, 2).

y
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�2

2

4

2 4�2

FIGURE 0.9
Perpendicular lines.

Solution The slope of y = −2x + 4 is −2. The slope of the perpendicular line is then
−1/(−2) = 1

2 . Since the line must pass through the point (1, 2), the equation of the
perpendicular line is now

y = 1

2
(x − 1) + 2.

We show a graph of the two lines in Figure 0.9. �

We now return to the section’s introductory example to use the equation of a line to
estimate the population in the year 2000.

EXAMPLE 1.7 Using a Line to Estimate Population

Given the population data for the census years 1960, 1970, 1980 and 1990, estimate the
population for the year 2000.

Solution First, recall that we began this section by showing that the points in the
corresponding table were not colinear. Nonetheless, they were nearly colinear. So, why
not use the straight line connecting the last two points (20, 227) and (30, 249) (recall that
these correspond to the population in the years 1980 and 1990) to estimate the population
in 2000? (This is a simple example of a more general procedure called extrapolation.)
The slope of the line joining the two data points is

m = 249 − 227

30 − 20
= 22

10
= 11

5
.

The equation of the line is then

y = 11

5
(x − 30) + 249.

y
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FIGURE 0.10
Population.

See Figure 0.10 for a graph of the line. If we follow this line to the point corresponding
to x = 40 (the year 2000), we have the estimated population

11

5
(40 − 30) + 249 = 271.
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That is, the estimated population is 271 million people. The actual census figure for 2000
is 281 million, so that our estimate of 271 million is off by 10 million. This says that the
U.S. population has not continued to grow at a linear rate. So, our linear model is not
particularly accurate. �

In this section, we have so far drawn connections between the equations and graphs
of lines. This process can be extended to a variety of other curves. In fact, most of this
introductory chapter is devoted to exploring such connections. Before doing so, we need
some general definitions.

Functions
For any two subsets A and B of the real line, we make the following familiar definition.

DEFINITION 1.2

A function f is a rule that assigns exactly one element y in a set B to each element x
in a set A. In this case, we write y = f (x).

We call the set A the domain of f . The set of all values f (x) in B is called the
range of f . That is, the range of f is { f (x) | x ∈ A}. Unless explicitly stated otherwise,
the domain of a function f is the largest set of real numbers for which the function is
defined. We refer to x as the independent variable and to y as the dependent variable.

REMARK 1.1

Functions are often defined by
simple formulas, such as
f (x) = 3x + 2, but in general,
any correspondence meeting the
requirement of matching exactly
one y to each x defines a function.

By the graph of a function f , we mean the graph of the equation y = f (x). That is,
the graph consists of all points (x, y), where x is in the domain of f and where y = f (x).

Notice that not every curve is the graph of a function, since for a function, there is
only one y-value that can correspond to a given value of x . Recall that you can graphically
determine whether a curve is the graph of a function by using the vertical line test: if any
vertical line intersects the graph in more than one point, the curve is not the graph of a
function.

EXAMPLE 1.8 Using the Vertical Line Test

Determine which curves correspond to functions.

y

x
1�1

y

x
0.5 21

�1

1

FIGURE 0.11a FIGURE 0.11b

Solution Notice that the circle in Figure 0.11a is not the graph of a function, since
a vertical line at x = 0.5 intersects the circle twice (see Figure 0.12a). The graph in
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Figure 0.11b is the graph of a function, even though it swings up and down repeatedly.
Although horizontal lines intersect the graph repeatedly, vertical lines, such as the one at
x = 1.2, intersect only once (see Figure 0.12b).

y

x
10.5�1

y

x
0.5 21

�1

1

FIGURE 0.12a
Curve fails vertical line test.

FIGURE 0.12b
Curve passes vertical line test.

You are already familiar with a number of different types of functions and we will
only briefly review these here and in sections 0.4 and 0.5. The functions that you are
probably most familiar with are polynomials. These are the simplest functions to work
with because they are defined entirely in terms of arithmetic. �

DEFINITION 1.3

A polynomial is any function that can be written in the form

f (x) = an xn + an−1xn−1 + · · · + a1x + a0,

where a0, a1, a2, . . . , an are real numbers (the coefficients of the polynomial) with
an �= 0 and n ≥ 0 is an integer (the degree of the polynomial).

Note that the domain of every polynomial function is the entire real line. Further,
recognize that the graph of the linear (degree 1) polynomial f (x) = ax + b is a straight line.

EXAMPLE 1.9 Sample Polynomials

The following are all examples of polynomials:

f (x) = 2 (polynomial of degree 0 or constant),

f (x) = 3x + 2 (polynomial of degree 1 or linear polynomial),

f (x) = 5x2 − 2x + 1 (polynomial of degree 2 or quadratic polynomial),

f (x) = x3 − 2x + 1 (polynomial of degree 3 or cubic polynomial),

f (x) = −6x4 + 12x2 − 3x + 13 (polynomial of degree 4 or quartic polynomial),

and

f (x) = 2x5 + 6x4 − 8x2 + x − 3 (polynomial of degree 5 or quintic polynomial).

We show graphs of these six functions in Figures 0.13a–0.13f (shown on the next page).
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FIGURE 0.13a
f (x) = 2.

FIGURE 0.13b
f (x) = 3x + 2.

FIGURE 0.13c
f (x) = 5x2 − 2x + 1.
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FIGURE 0.13d
f (x) = x3 − 2x + 1.

FIGURE 0.13e
f (x) = −6x4 + 12x2 − 3x + 13.

FIGURE 0.13f
f (x) = 2x5 + 6x4 − 8x2 + x − 3.

�

DEFINITION 1.4

Any function that can be written in the form

f (x) = p(x)

q(x)
,

where p and q are polynomials, with q(x) �= 0, is called a rational function.

Notice that since p(x) and q(x) are polynomials, they are both defined for all x , and

so, the rational function f (x) = p(x)

q(x)
is defined for all x for which q(x) �= 0.

EXAMPLE 1.10 A Sample Rational Function

Find the domain of the function

f (x) = x2 + 7x − 11

x2 − 4
.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

PB480-00 PB480-Smith-v13.cls July 6, 2004 11:24

SECTION 0.1 Polynomials and Rational Functions 11

Solution Here, f (x) is a rational function. We show a graph in Figure 0.14. Further, its
domain consists of those values of x for which the denominator is nonzero. Notice that

x2 − 4 = (x − 2)(x + 2)

y

x
1 3�1�3

�10

�5

5

10

FIGURE 0.14

f (x) = x2 + 7x − 11

x2 − 4
.

and so, the denominator is zero if and only if x = ±2. This says that the domain of f is

{x ∈ R | x �= ±2} = (−∞, −2) ∪ (−2, 2) ∪ (2, ∞). �

No doubt, you will recall the following standard definition.

DEFINITION 1.5

The absolute value of a real number x is |x | =
{

x, if x ≥ 0
−x, if x < 0

.

Make certain that you read Definition 1.5 correctly. If x is negative, then −x is positive.
This says that |x | ≥ 0 for all real numbers x . For instance, using the definition,

|−4| = −(−4) = 4.

Notice that for any real numbers a and b,

|a · b| = |a| · |b|.
However,

|a + b| �= |a| + |b|,
in general. (To verify this, simply take a = 5 and b = −2 and compute both quantities.)

However, it is always true that

|a + b| ≤ |a| + |b|. (1.5)

The inequality (1.5) is referred to as the triangle inequality. You will find occasional uses
for it as you progress through the calculus.

The square root function is defined in the usual way. When we write y = √
x , we

mean that y is that number for which y ≥ 0 and y2 = x . In particular,
√

4 = 2. Be careful
not to write erroneous statements like

√
4 = ±2. This is a common misconception. While

it’s true that 22 = 4 and (−2)2 = 4, when we write
√

4, we are looking for the positive
number whose square is 4. In this way,

√
x defines a function with domain [0, ∞). If we

allowed
√

x to take on both positive and negative values, this would not define a function.
In particular, be careful to write

√
x2 = |x |.

Since
√

x2 is asking for the nonnegative number whose square is x2, we are looking for |x |
and not x . We can say

√
x2 = x, only for x ≥ 0.

EXAMPLE 1.11 Finding the Domain of a Function Involving a Square
Root or a Cube Root

Find the domains of f (x) = √
x2 − 4 and g(x) = 3

√
x2 − 4.
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Solution Since even roots are defined only for nonnegative values, f (x) is defined only
for x2 − 4 ≥ 0. Notice that this is equivalent to having x2 ≥ 4, which occurs when x ≥ 2
or x ≤ −2. The domain of f is then (−∞, −2] ∪ [2, ∞). On the other hand, odd roots
are defined for both positive and negative values. Consequently, the domain of g(x) is
the entire real line, (−∞, ∞). �

In our study of calculus, we often find it useful to label intercepts and other significant
points on a graph. Finding these points often involves solving equations. A solution of the
equation f (x) = 0 is called a zero of the function f or a root of the equation f (x) = 0.
Notice that a zero of the function f corresponds to an x-intercept of the graph of y = f (x).

EXAMPLE 1.12 Finding Intercepts of a Graph

Find all x- and y-intercepts of y = x2 − 4x + 3.

62 4�2

10

2

4

6

8

y

x

FIGURE 0.15
y = x2 − 4x + 3.

Solution To find the y-intercept, recall that we set x = 0 to obtain

y = 0 − 0 + 3 = 3.

Notice that in Figure 0.15, the graph crosses the y-axis at y = 3.
Similarly, to find the x-intercepts, we solve the equation f (x) = 0. In this case, we

can factor to get

0 = x2 − 4x + 3 = (x − 1)(x − 3),

so that the x-intercepts are x = 1 and x = 3, as indicated in Figure 0.15. �

We briefly discuss several ideas for finding zeros here.
Unfortunately, factoring is not always so easy. Of course, for the quadratic equation

ax2 + bx + c = 0

(for a, b and c all real numbers and a �= 0), the solution(s) are given by the familiar quadratic
formula:

x = −b ± √
b2 − 4ac

2a
.

EXAMPLE 1.13 Finding Zeros Using the Quadratic Formula

Find the zeros of f (x) = x2 − 5x − 12.

Solution You might try to factor this one, but you probably won’t have much luck.
However, from the quadratic formula, we have

x = −(−5) ±
√

(−5)2 − 4 · 1 · (−12)

2 · 1
= 5 ± √

25 + 48

2
= 5 ± √

73

2
.

So, the two solutions are given by x = 5
2 +

√
73
2 ≈ 6.772 and x = 5

2 −
√

73
2 ≈ −1.772.

(No wonder you couldn’t factor the polynomial!) �

Finding zeros of polynomials of degree higher than 2 and other functions is usually
quite a bit trickier and is sometimes impossible. At the least, you can always find an
approximation of any zeros by using a graph to zoom in closer and closer to any point
where the graph crosses the x-axis, as we’ll illustrate shortly. (Keep in mind that the zeros
of a function correspond to the x-intercepts of its graph.) A more basic question, though, is
to determine how many zeros a given function has. In general, there is no way to answer this
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question without the use of calculus. For the case of polynomials, however, the following
theorem (a consequence of the Fundamental Theorem of Algebra) provides a clue.

THEOREM 1.2

A polynomial of degree n has at most n distinct zeros.

Notice that this theorem does not say how many zeros a given polynomial has, but
rather, that the maximum number of distinct (i.e., different) zeros is the same as the degree.
A polynomial of degree n may have anywhere from 0 to n distinct real zeros. [Recall
that polynomials may also have complex zeros. For instance, f (x) = x2 + 1 has only the
complex zeros x = ±i , where i is the imaginary number defined by i = √−1.] However,
polynomials of odd degree must have at least one real zero. (Why is that?) For instance,
for the case of a cubic polynomial, we have one of the three possibilities illustrated in
Figures 0.16a, 0.16b and 0.16c.

y

x
x1

y

x
x1 x2

y

x
x1 x2 x3

FIGURE 0.16a
One zero.

FIGURE 0.16b
Two zeros.

FIGURE 0.16c
Three zeros.

In these three figures, we show the graphs of cubic polynomials with 1, 2 and 3 distinct,
real zeros, respectively. These are the graphs of the functions

f (x) = x3 − 2x2 + 3 = (x + 1)(x2 − 3x + 3),

g(x) = x3 − x2 − x + 1 = (x + 1)(x − 1)2

and

h(x) = x3 − 3x2 − x + 3 = (x + 1)(x − 1)(x − 3),

respectively. Note that you can see from the factored form where the zeros are (and how
many there are).

The result in Theorem 1.3 provides an important connection between factors and zeros
of polynomials.

THEOREM 1.3 (Factor Theorem)

For any polynomial f, f (a) = 0 if and only if (x − a) is a factor of f (x).

EXAMPLE 1.14 Finding the Zeros of a Cubic Polynomial

Find the zeros of f (x) = x3 − x2 − 2x + 2.
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Solution You might quickly recognize that one zero of this function is x = 1. [Just
calculate f (1) to verify this.] But how many other zeros are there? A graph of the
function may be of some value here (see Figure 0.17a). You can see from the graph that
the other two zeros of f are near x = −1.5 and near x = 1.5. You can find these zeros
more precisely by using your graphing calculator or computer algebra system to zoom
in on the locations of these zeros (one at a time, as in Figures 0.17b and 0.17c). From
these zoomed graphs, it is clear that the two remaining zeros of f are near x = 1.414
and x = −1.414. Of course, you can make these estimates more precise by zooming in
even more closely. Most graphing calculators and computer algebra systems can also find
approximate zeros for you, using a built-in “solve” program. In Chapter 3, we present
a versatile method (called Newton’s method) for obtaining accurate approximations to
zeros. The only way to find the exact solutions is to factor the expression (using either
long division or synthetic division). Here, we have

f (x) = x3 − x2 − 2x + 2 = (x − 1)(x2 − 2) = (x − 1)(x −
√

2)(x +
√

2),

from which you can see that the zeros are x = 1, x = √
2 and x = −√

2.

y

x
2 31�1�2

�2

2

4

�1.41 �1.39

�0.2

0.2

x

y

1.40 1.42

�0.02

�0.04

0.02

x

y

FIGURE 0.17a
y = x3 − x2 − 2x + 2.

FIGURE 0.17b
Zoomed in on zero near x = −1.4.

FIGURE 0.17c
Zoomed in on zero near x = 1.4.

�

Recall that to find the points of intersection of two curves defined by y = f (x) and y =
g(x), we set f (x) = g(x) and solve for any x’s satisfying the equation (the x-coordinates
of the points of intersection).

EXAMPLE 1.15 Finding the Intersections of a Line and a Parabola

Find the points of intersection of the parabola y = x2 − x − 5 and the line y = x + 3.
y

x
4 6�2�4

�10

10

20

FIGURE 0.18
y = x + 3 and y = x2 − x − 5.

Solution First, we draw a sketch of the two curves, as seen in Figure 0.18. Notice
from the graph that there are two intersections indicated, one near x = −2 and the other
near x = 4. To determine these precisely, we set the two functions equal and solve
for x :

x2 − x − 5 = x + 3.

Subtracting (x + 3) from both sides leaves us with

0 = x2 − 2x − 8 = (x − 4)(x + 2).

This says that the solutions are exactly x = −2 and x = 4. We compute the corresponding
y-values from the equation of the line y = x + 3 (or the equation of the parabola). The
points of intersection are then (−2, 1) and (4, 7). Notice that these are consistent with
the intersections seen in Figure 0.18. �
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Unfortunately, you won’t always be able to solve equations exactly, as we did in
examples 1.12–1.15. We explore some options for dealing with more difficult equations in
section 0.2.

EXERCISES 0.1

WRITING EXERCISES

1. If the slope between points A and B equals the slope between
points B and C , explain why the points A, B and C are colinear.

2. If a graph fails the vertical line test, it is not the graph of
a function. Explain this result in terms of the definition of a
function.

3. You should not automatically write the equation of a line in
slope-intercept form. Compare the following forms of the same
line: y = 2.4(x − 1.8) + 0.4 and y = 2.4x − 3.92. Given x =
1.8, which equation would you rather use to compute y? How
about if you are given x = 0? For x = 8, is there any advantage
to one equation over the other? Can you quickly read off the
slope from either equation? Explain why neither form of the
equation is “better.”

4. To understand Definition 1.5, you must believe that |x | = −x
for negative x’s. Using x = −3 as an example, explain in words
why multiplying x by −1 produces the same result as taking
the absolute value of x .

In exercises 1–4, determine if the points are colinear.

1. (2, 1), (0, 2), (4, 0) 2. (3, 1), (4, 4), (5, 8)

3. (4, 1), (3, 2), (1, 3) 4. (1, 2), (2, 5), (4, 8)

In exercises 5–10, find the slope of the line through the given
points.

5. (1, 2), (3, 6) 6. (1, 2), (3, 3)

7. (3, −6), (1, −1) 8. (1, −2), (−1, −3)

9. (0.3, −1.4), (−1.1, −0.4) 10. (1.2, 2.1), (3.1, 2.4)

In exercises 11–16, find a second point on the line with slope m
and point P , graph the line and find an equation of the line.

11. m = 2, P = (1, 3) 12. m = −2, P = (1, 4)

13. m = 0, P = (−1, 1) 14. m = 1
2 , P = (2, 1)

15. m = 1.2, P = (2.3, 1.1) 16. m = − 1
4 , P = (−2, 1)

In exercises 17–22, determine if the lines are parallel, perpen-
dicular, or neither.

17. y = 3(x − 1) + 2 and y = 3(x + 4) − 1

18. y = 2(x − 3) + 1 and y = 4(x − 3) + 1

19. y = −2(x + 1) − 1 and y = 1
2 (x − 2) + 3

20. y = 2x − 1 and y = −2x + 2

21. y = 3x + 1 and y = − 1
3 x + 2

22. x + 2y = 1 and 2x + 4y = 3

In exercises 23–26, find an equation of a line through the given
point and (a) parallel to and (b) perpendicular to the given
line.

23. y = 2(x + 1) − 2 at (2, 1) 24. y = 3(x − 2) + 1 at (0, 3)

25. y = 2x + 1 at (3, 1) 26. y = 1 at (0, −1)

In exercises 27–30, find an equation of the line through the given
points and compute the y-coordinate of the point on the line cor-
responding to x � 4.

27. y

x
2 3 4 51

1

2

3

4

5

28. y

x
21 43 5 6

2

3

1

4

5

6
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29. y

x
1.0 2.00.5 1.5

2

3

1

4

30. y

x
1�2 �1

1.0

3.0

2.0

In exercises 31–34, use the vertical line test to determine whether
or not the curve is the graph of a function.

31. y

x
2 3�2�3

�10

�5

5

10

32. y

x
42

�2�4

�10

�5

5

10

33. y

x
321�1�2�3

2

4

6

34. y

x
21.510.5

0.5

1

In exercises 35–40, identify the given function as polynomial,
rational, both or neither.

35. f (x) = x3 − 4x + 1 36. f (x) = 3 − 2x + x4

37. f (x) = x2 + 2x − 1

x + 1
38. f (x) = x3 + 4x − 1

x4 − 1
39. f (x) = √

x2 + 1 40. f (x) = 2x − x2/3 − 6

In exercises 41–46, find the domain of the function.

41. f (x) = √
x + 2 42. f (x) = √

2x + 1

43. f (x) = 3
√

x − 1 44. f (x) = √
x2 − 4

45. f (x) = 4

x2 − 1
46. f (x) = 4x

x2 + 2x − 6

In exercises 47–50, find the indicated function values.

47. f (x) = x2 − x − 1; f (0), f (2), f (−3), f (1/2)

48. f (x) = x + 1

x − 1
; f (0), f (2), f (−2), f (1/2)

49. f (x) = √
x + 1; f (0), f (3), f (−1), f (1/2)

50. f (x) = 3

x
; f (1), f (10), f (100), f (1/3)

In exercises 51–54, a brief description is given of a physical sit-
uation. For the indicated variable, state a reasonable domain.

51. A parking deck is to be built; x = width of deck (in feet).

52. A parking deck is to be built on a 200′-by-200′ lot; x = width
of deck (in feet).

53. A new candy bar is to be sold; x = number of candy bars sold
in first month.
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54. A new candy bar is to be sold; x = cost of candy bar
(in cents).

In exercises 55–58, discuss whether or not you think y would be
a function of x.

55. y = grade you get on an exam, x = number of hours you
study

56. y = probability of getting lung cancer, x = number of
cigarettes smoked per day

57. y = a person’s weight, x = number of minutes exercising
per day

58. y = speed at which an object falls, x = weight of object

59. Figure A shows the speed of a bicyclist as a function of time.
For the portions of this graph that are flat, what is happen-
ing to the bicyclist’s speed? What is happening to the bicy-
clist’s speed when the graph goes up? down? Identify the por-
tions of the graph that correspond to the bicyclist going uphill;
downhill.

Speed

Time

FIGURE A
Bicycle speed.

60. Figure B shows the population of a small country as a function
of time. During the time period shown, the country experienced
two influxes of immigrants, a war and a plague. Identify these
important events.

Population

Time

FIGURE B
Population.

In exercises 61–66, find all intercepts of the given graph.

61. y = x2 − 2x − 8 62. y = x2 + 4x + 4

63. y = x3 − 8 64. y = x3 − 3x2 + 3x − 1

65. y = x2 − 4

x + 1
66. y = 2x − 1

x2 − 4

In exercises 67–74, factor and/or use the quadratic formula to
find all zeros of the given function.

67. f (x) = x2 − 4x + 3 68. f (x) = x2 + x − 12

69. f (x) = x2 − 4x + 2 70. f (x) = 2x2 + 4x − 1

71. f (x) = x3 − 3x2 + 2x 72. f (x) = x3 − 2x2 − x + 2

73. f (x) = x6 + x3 − 2 74. f (x) = x3 + x2 − 4x − 4

75. The boiling point of water (in degrees Fahrenheit) at ele-
vation h (in thousands of feet above sea level) is given by
B(h) = −1.8h + 212. Find h such that water boils at 98.6◦ .
Why would this altitude be dangerous to humans?

76. The spin rate of a golf ball hit with a 9 iron has been measured
at 9100 rpm for a 120-compression ball and at 10,000 rpm
for a 60-compression ball. Most golfers use 90-compression
balls. If the spin rate is a linear function of compression, find
the spin rate for a 90-compression ball. Professional golfers
often use 100-compression balls. Estimate the spin rate of a
100-compression ball.

77. The chirping rate of a cricket depends on the temperature. A
species of tree cricket chirps 160 times per minute at 79◦F and
100 times per minute at 64◦F. Find a linear function relating
temperature to chirping rate.

78. When describing how to measure temperature by counting
cricket chirps, most guides suggest that you count the num-
ber of chirps in a 15-second time period. Use exercise 77 to
explain why this is a convenient period of time.

EXPLORATORY EXERCISES

1. Suppose you have a machine that will proportionally enlarge a
photograph. For example, it could enlarge a 4 × 6 photograph
to 8 × 12 by doubling the width and height. You could make
an 8 × 10 picture by cropping 1 inch off each side. Explain
how you would enlarge a 3 1

2 × 5 picture to an 8 × 10. A friend
returns from Scotland with a 3 1

2 × 5 picture showing the Loch

Ness monster in the outer 1
4

′′
on the right. If you use your proce-

dure to make an 8 × 10 enlargement, does Nessie make the cut?

2. Solve the equation |x − 2| + |x − 3| = 1. (Hint: It’s an
unusual solution, in that it’s more than just a couple of
numbers.) Then, solve the equation

√
x + 3 − 4

√
x − 1 +√

x + 8 − 6
√

x − 1 = 1. (Hint: If you make the correct sub-
stitution, you can use your solution to the previous equation.)
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0.2 GRAPHING CALCULATORS AND COMPUTER
ALGEBRA SYSTEMS

The relationship between a function and its graph is one of the central topics in calculus.
Graphing calculators and user-friendly computer software allow you to explore these rela-
tionships for a much wider variety of functions than you could with pencil and paper alone.
This section presents a general framework for using technology to explore the graphs of
functions.

y

x
42�4 �2

20

40

60

FIGURE 0.19a
y = 3x2 − 1.

As we observed in section 0.1, the graphs of linear functions are straight lines. You
probably also remember that the graphs of quadratic polynomials are parabolas. One of the
goals of this section is for you to become more familiar with the graphs of other functions.
The best way to become familiar is by experience, working example after example.

EXAMPLE 2.1 Generating a Calculator Graph

Use your calculator or computer to sketch a graph of f (x) = 3x2 − 1.

y

x
21�1�2

4

8

FIGURE 0.19b
y = 3x2 − 1.

Solution You should get an initial graph that looks something like that in Figure 0.19a.
This is simply a parabola opening upward. A graph is often used to search for important
points, such as x-intercepts, y-intercepts, or peaks and troughs. In this case, we could
see these points better if we zoom in; that is, display a smaller range of x- and y-values
than the technology has initially chosen for us. The graph in Figure 0.19b shows x-values
from x = −2 to x = 2 and y-values from y = −2 to y = 10.

You can see more clearly in Figure 0.19b that the parabola bottoms out roughly
at the point (0, −1) and crosses the x-axis at approximately x = −0.5 and x = 0.5.
You can make this more precise by doing some algebra. Recall that an x-intercept is a
point where y = 0 or f (x) = 0. Solving 3x2 − 1 = 0 gives 3x2 = 1 or x2 = 1

3 , so that

x = ±
√

1
3 ≈ ±0.57735. �

Notice the interplay in example 2.1 between the graphics and the algebra. The graph
suggested approximate values for the two x-intercepts, but you needed the algebra to find

the values exactly. (It’s worth noting that since
√

1
3 ≈ 0.577, our visual guess of 0.5 was

not especially accurate.) Also note that by zooming in, we used the technology to show us a
view of the graph that highlighted the features of the graph that we wanted. But, in general,
how do you know what the best view is? For example, the graphs in Figures 0.19a and 0.19b
indicate a simple parabola, but how do you know that there are no interesting features of
the graph lurking just off the screen? In short, you don’t, without some calculus.

Before investigating other graphs, we should say a few words about what a computer-
or calculator-generated graph really is. Actually, computers and calculators do not draw
graphs. Yes, we usually call them graphs, but what the computer actually does is light up
some tiny screen elements called pixels. If the pixels are small enough, the image appears
to be a continuous curve or graph.

By graphing window, we mean the rectangle defined by the range of x- and y-values
displayed. The graphing window can dramatically affect the look of a graph. For example,
suppose the x’s run from x = −2 to x = 2. If the computer or calculator screen is wide
enough for 400 columns of pixels from left to right, then points will be displayed for x =
−2, x = −1.99, x = −1.98, . . . . If there is an interesting feature of this function located
between x = −1.99 and x = −1.98, you will not see it unless you zoom in some. In this
case, zooming in would reduce the difference between adjacent x’s. Similarly, suppose that
the y’s run from y = 0 to y = 3 and that there are 600 rows of pixels from top to bottom.
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Then, there will be pixels corresponding to y = 0, y = 0.005, y = 0.01, . . . . Now, suppose
that f (−2) = 0.0049 and f (−1.99) = 0.0051. Before points are plotted, function values
are rounded to the nearest y-value, in this case 0.005. You won’t be able to see any difference
in the y-values of these points. If the actual difference is important, you will need to zoom
in some to see it.

REMARK 2.1

Most calculators and computer drawing packages follow one of the following two
schemes for defining the graphing window for a given function.

� Fixed graphing window: Most calculators follow this method. Graphs are plotted
in a preselected range of x- and y-values, unless you specify otherwise. For
example, the very popular Texas Instruments graphing calculators will
automatically plot points in the rectangle defined by −10 ≤ x ≤ 10 and
−10 ≤ y ≤ 10.

� Automatic graphing window: Most computer drawing packages and some
calculators follow this method. Graphs are plotted for a preselected range of
x-values and the computer calculates the range of y-values so that all of the
calculated points will fit in the screen’s range.

Get to know how your calculator or computer software operates and use it routinely as
you progress through this course. Whether you are using a graphing calculator or a
computer, you should always be able to reproduce the computer-generated graphs
used in this text by adjusting your graphing window appropriately.

Graphs are drawn to provide visual displays of the significant features of a function.
What qualifies as significant will vary from problem to problem, but often the x- and y-
intercepts and points known as extrema are of interest. The function value f (M) is called
a local maximum of the function f if f (M) ≥ f (x) for all x’s “nearby” x = M [more
precisely, if there exist numbers a and b with a < M < b such that f (M) ≥ f (x) for all x
such that a < x < b]. Similarly, the function value f (m) is a local minimum of the function
f if f (m) ≤ f (x) for all x’s “nearby” x = m. A local extremum is a function value that is
either a local maximum or local minimum. Whenever possible, you should produce graphs
that show all intercepts and extrema.

EXAMPLE 2.2 Sketching a Graph

Sketch a graph of f (x) = x3 + 4x2 − 5x − 1 showing all intercepts and extrema.

Solution Depending on your calculator or computer software, you may initially get a
graph that looks like one of those in Figures 0.20a or 0.20b.

y

x
42�2�4

100

200

y

x
105�10

�10

10

FIGURE 0.20a
y = x3 + 4x2 − 5x − 1.

FIGURE 0.20b
y = x3 + 4x2 − 5x − 1.
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y

42�2�4

20

10

30

x

FIGURE 0.21
y = x3 + 4x2 − 5x − 1.

Neither graph is completely satisfactory, although both should give you the idea of a
graph that (reading left to right) rises to a local maximum near x = −3, drops to a
local minimum near x = 1, and then rises again. To get a better graph, notice the scales
on the x- and y-axes. The graphing window for Figure 0.20a is the rectangle defined by
−5 ≤ x ≤ 5 and −6 ≤ y ≤ 203. The graphing window for Figure 0.20b is defined by the
rectangle −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10. From either graph, it appears that we need
to show y-values larger than 10, but not nearly as large as 203, to see the local maximum.
Since all of the significant features appear to lie between x = −6 and x = 6, one choice
for a better window is −6 ≤ x ≤ 6 and −6 ≤ y ≤ 30, as seen in Figure 0.21. There, you
can clearly see the three x-intercepts, the local maximum and the local minimum. �

Note that the graph in example 2.2 was produced by a process of trial and error with
thoughtful corrections. You are unlikely to get a perfect picture on your first try. But, from
this starting place, you can enlarge the graphing window (i.e., zoom out) if you need to see
more or shrink the graphing window (i.e., zoom in) if the details are hard to see. You should
get comfortable enough with your technology that this revision process is routine (and even
fun!).

y

x

y � a1x � a0

FIGURE 0.22a
Line, a1 < 0.

y

x

y � a1x � a0

FIGURE 0.22b
Line, a1 > 0.

In the exercises, you will be asked to graph a variety of functions and discuss the shapes
of the graphs of polynomials of different degrees. Having some knowledge of the general
shapes will help you decide whether or not you have found an acceptable graph. To get
you started, we summarize the different shapes of linear, quadratic and cubic polynomials
below. Of course, the graphs of linear functions of the form f (x) = a1x + a0 are simply
straight lines of slope a1. Two possibilities are shown in Figures 0.22a and 0.22b. Whenever
function values get smaller, as you look from left to right, as in Figure 0.22a, we say that
the function f is decreasing. If function values get larger, as you look from left to right, as
in Figure 0.22b, we say that the function is increasing.

You will also recall that the graphs of quadratic polynomials of the form f (x) =
a2x2 + a1x + a0 are parabolas. The parabola opens upward if a2 > 0 and opens downward
if a2 < 0. We show typical parabolas in Figures 0.23a and 0.23b.

y

x

y � a2x2 � a1x � a0

y

x

y � a2x2 � a1x � a0

FIGURE 0.23a
Parabola, a2 > 0.

FIGURE 0.23b
Parabola, a2 < 0.

Notice that the parabolas indicated in Figures 0.23a and 0.23b are both increasing and
decreasing on different intervals of the x-axis. One of our goals for later in the text is to
learn how to precisely determine the intervals on which a given function is increasing and
decreasing. The graphs of cubic functions of the form a3x3 + a2x2 + a1x + a0 are some-
what S-shaped. Reading from left to right, the function begins negative and ends positive
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if a3 > 0 and begins positive and ends negative if a3 < 0, as indicated in Figures 0.24a
and 0.24b.

y

x

y � a3x3 � a2x2 � a1x � a0

y

x

y � a3x3 � a2x2 � a1x � a0

FIGURE 0.24a
Cubic: one max, min, a3 > 0.

FIGURE 0.24b
Cubic: one max, min, a3 < 0.

Cubics often have one local maximum and one local minimum, as do those in
Figures 0.24a and 0.24b. Many cubics, such as those in Figures 0.25a and 0.25b, tem-
porarily flatten out without turning around to create a local maximum or minimum. The
point where the curve changes its shape (from being bent upward, to being bent downward,
or vice versa), is called an inflection point.

y

x

y � a3x3 � a2x2 � a1x � a0

Inflection
point

y

x

y � a3x3 � a2x2 � a1x � a0

Inflection
point

FIGURE 0.25a
Cubic: no max or min, a3 > 0.

FIGURE 0.25b
Cubic: no max or min, a3 < 0.

We will use the calculus developed over the next several chapters to see how to adjust
the graphing window so that all of the significant features of a graph are shown. You can
already use your knowledge of the general shapes of certain functions to see how to adjust
the graphing window, as in example 2.3.

EXAMPLE 2.3 Sketching the Graph of a Cubic Polynomial

Sketch a graph of the cubic polynomial f (x) = x3 − 20x2 − x + 20.

Solution Your initial graph probably looks like one of those in Figures 0.26a or
0.26b (shown on the next page).

From the preceding discussion on the general shapes of cubics, you should recognize
that neither of these graphs looks like a cubic. More than anything else, they look like
parabolas. To see the S-shape behavior in the graph, we need to look on a larger range of
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FIGURE 0.26a
f (x) = x3 − 20x2 − x + 20.

FIGURE 0.26b
f (x) = x3 − 20x2 − x + 20.

FIGURE 0.26c
f (x) = x3 − 20x2 − x + 20.

x-values. But how much larger? Unfortunately, we can’t answer that question in general,
before we develop some of the concepts of calculus. For the moment, the answer is to use
trial and error, until the graph resembles the shape of a cubic. You should recognize the
characteristic shape of a cubic in Figure 0.26c. Notice from Figure 0.26c, that although we
now see more of the big picture (often referred to as the global behavior of the function),
we have lost some of the details (such as the x-intercepts), which we could clearly see in
Figures 0.26a and 0.26b (often referred to as the local behavior of the function). �

Rational functions have some properties not seen in polynomials, as we see in exam-
ples 2.4 to 2.6.

EXAMPLE 2.4 Sketching the Graph of a Rational Function

Sketch a graph of f (x) = x − 1

x − 2
and describe the behavior of the graph near x = 2.

Solution Your initial graph should look something like one of Figures 0.27a or 0.27b.
From either graph, it should be clear that something unusual is happening near x = 2.
Zooming in closer to x = 2 should yield a graph like that in Figures 0.28a or 0.28b.
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x
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�5e�07
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1e�08

FIGURE 0.27a

y = x − 1

x − 2
.
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x
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FIGURE 0.27b

y = x − 1

x − 2
.
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�20

�10
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20

x

FIGURE 0.28a

y = x − 1

x − 2
.

FIGURE 0.28b

y = x − 1

x − 2
.

Figure 0.28a shows a connected (or line) plot where along with computing one point
per x-value, the computer highlights extra pixels to try to smooth out the graph. The
disconnected (or dot) plot in Figure 0.28b simply displays the computed points. In both
graphs, it appears that as x increases up to 2, the function values get more and more
negative, while as x decreases down to 2, the function values get more and more positive.
This is also observed in the following table of function values.
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x f(x)

1.8 −4

1.9 −9

1.99 −99

1.999 −999

1.9999 −9999

x f(x)

2.2 6

2.1 11

2.01 101

2.001 1001

2.0001 10,001

Note that at x = 2, f (x) is undefined. However, as x approaches 2 from the left, the graph
veers down sharply. In this case, we say that f (x) tends to −∞. Likewise, as x approaches
2 from the right, the graph rises sharply. Here, we say that f (x) tends to ∞ and there
is a vertical asymptote at x = 2. (We’ll define this more carefully in Chapter 1.) It is
common to draw a vertical dashed line at x = 2 to indicate this (see Figure 0.29). Since
f (2) is undefined, there is no point plotted at x = 2. �

y

x
4 8�4

�10

�5

5

10

FIGURE 0.29
Vertical asymptote.

Many rational functions have vertical asymptotes. Notice that there is no point plotted on
the vertical asymptote since the function is undefined at such an x-value (due to the division
by zero when that value of x is substituted in). Given a rational function, you can locate
possible vertical asymptotes by finding x-values where the denominator is zero. It turns out
that if the numerator is not zero for such an x , there is a vertical asymptote at this value of x .

EXAMPLE 2.5 A Graph with Several Vertical Asymptotes

Find all vertical asymptotes for f (x) = x − 1

x2 − 5x + 6
.

Solution Note that the denominator is

x2 − 5x + 6 = (x − 2)(x − 3),

so that the only possible locations for vertical asymptotes are x = 2 and x = 3. Since
neither x-value makes the numerator (x − 1) equal to zero, there are vertical asymptotes
at both x = 2 and x = 3. A quick computer-generated graph gives little indication of
how the function behaves near the asymptotes (see Figure 0.30).
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x
1 4

�3e�08

�2e�08

�1e�08

1e�08

2e�08
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x
4 51

�10

�5

5

FIGURE 0.30

y = x − 1

x2 − 5x + 6
.

FIGURE 0.31

y = x − 1

x2 − 5x + 6
.

We can improve the graph by zooming in in both the x- and y-directions. Figure 0.31
shows a graph of the same function using the graphing window defined by the rectangle
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−1 ≤ x ≤ 5 and −13 ≤ y ≤ 7. While this graph can still stand some improvement (we’ll
see how to use the calculus to do this in Chapter 3), the graph is adequate and clearly
shows the vertical asymptotes at x = 2 and x = 3. �

As we see in example 2.6, not all rational functions have vertical asymptotes.

EXAMPLE 2.6 A Rational Function with No Vertical Asymptotes

Find all vertical asymptotes of
x − 1

x2 + 4
.

y

x
2010�10

�0.2

0.2

�0.4

FIGURE 0.32

y = x − 1

x2 + 4
.

Solution Notice that x2 + 4 = 0 has no (real) solutions, since x2 + 4 > 0 for all real
numbers, x . So, there are no vertical asymptotes. The graph in Figure 0.32 is consistent
with this observation. �

Graphs are useful for finding approximate solutions of difficult equations. We explore
this in examples 2.7 and 2.8.

EXAMPLE 2.7 Finding Zeros Approximately

Find approximate solutions of the equation x2 = √
x + 3.

y

x
2 4�2�4

4

8

12

FIGURE 0.33
y = x2 − √

x + 3.

y

x
2 4�2�4

4

6

8

2

10

FIGURE 0.34
y = x2 and y = √

x + 3.

Solution First, note that you can rewrite this equation as x2 − √
x + 3 = 0. You can

then look for zeros in the graph of f (x) = x2 − √
x + 3, seen in Figure 0.33. Note that

two zeros are clearly indicated: one near −1, the other near 1.5. However, since you know
very little of the nature of the function x2 − √

x + 3, you cannot say whether or not there
are any other zeros, ones that don’t show up in the window seen in Figure 0.33. On the
other hand, if you graph the two functions on either side of the equation on the same
set of axes, as in Figure 0.34, you can clearly see two points where the graphs intersect
(corresponding to the two zeros seen in Figure 0.33). Further, since you know the general
shapes of both of the graphs, you can infer from Figure 0.34 that there are no other
intersections (i.e., there are no other zeros of f ). This is important information that you
cannot obtain from Figure 0.33. Keep this useful alternative in mind when you are looking
for zeros. Now that you know how many solutions there are, you need to estimate their
values. As we have already illustrated, one method is to zoom in on the zeros graphically.
This method is reliable but rather tedious if you want more than two or three digits of
accuracy. We leave it as an exercise to verify that the zeros are approximately x = 1.4 and
x = −1.2. If your calculator or computer algebra system has a solve command, you can
use it to quickly obtain an accurate approximation. In this case, we get x ≈ 1.452626878
and x ≈ −1.164035140. �

When using the solve command on your calculator or computer algebra system, be sure
to check that the solutions make sense. If the results don’t match what you’ve seen in your
preliminary sketches and zooms, beware! Even high-tech equation solvers make mistakes
occasionally.

EXAMPLE 2.8 Finding Intersections by Calculator: An Oversight

Find all points of intersection of the graphs of y = 2 cos x and y = 2 − x .

Solution Notice that the intersections correspond to solutions of the equation 2 cos x =
2 − x . Using the solve command on the TI-92 graphing calculator, we found intersections
at x ≈ 3.69815 and x = 0. So, what’s the problem? A quick sketch of the graphs of
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y = 2 − x and y = 2 cos x (we discuss this function in the next section) clearly shows
three intersections (see Figure 0.35).

The middle solution, x ≈ 1.10914, was somehow passed over by the calculator’s
solve routine. The lesson here is to use graphical evidence to support your solutions,
especially when using software and/or functions with which you are less than completely
familiar. �

y

x
1 3 5�1

�2

4

FIGURE 0.35
y = 2 cos x and y = 2 − x .

You need to look skeptically at the answers provided by your calculator’s solver pro-
gram. While such solvers provide a quick and easy means of approximating solutions of
equations, these programs will sometimes return totally incorrect answers. So, how do you
know if your solver is giving you an accurate answer or one that’s totally incorrect? The
only answer to this is that you must carefully test your calculator’s solution, by separately
calculating both sides of the equation (by hand) at the calculated solution. Sure, it’s much
easier to simply accept the calculator’s answer, but doing so blindly is fraught with peril,
as we illustrate with example 2.9.

EXAMPLE 2.9 Solving an Equation by Calculator:
An Erroneous Answer

Use your calculator’s solver program to solve the equation x + 1

x
= 1

x
.

Solution Certainly, you don’t need a calculator to solve this equation, but consider
what happens when you use one. Most calculators report a solution that is very close
to zero, while others, like the TI-89 (and the author’s computer algebra system), report
that the solution is x = 0. Not only are these answers incorrect, but the given equa-
tion has no solution, as follows. First, notice that the equation only makes sense when

x �= 0. Then, subtracting
1

x
from both sides of the equation leaves us with x = 0, which

can’t possibly be a solution, since it does not satisfy the original equation. Notice fur-
ther, that if your calculator returns the approximate solution x = 1 × 10−7 and you use
your calculator to compute the values on both sides of the equation, the calculator will
compute

x + 1

x
= 1 × 10−7 + 1 × 107,

which it approximates as 1 × 107 = 1

x
, since calculators carry only a finite number of

digits. In other words, although

1 × 10−7 + 1 × 107 �= 1 × 107,

your calculator treats these numbers as the same and so, reports that the equation is
satisfied, when in fact, it’s not. The moral of this story is to be an intelligent user of
technology and don’t blindly accept everything a calculator tells you. �

We want to emphasize again that graphing should be the first step in the equation-solving
process. A good graph will show you how many solutions to expect, as well as give their
approximate locations. Whenever possible, you should factor or use the quadratic formula
to get exact solutions. When this is impossible, approximate the solutions by zooming in
on them graphically or by using your calculator’s solve command. Always compare your
results to a graph to see if there’s anything you’ve missed.
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EXERCISES 0.2

WRITING EXERCISES

1. Explain why there is a significant difference between Fig-
ures 0.28a and 0.28b.

2. In Figure 0.28a, the graph approaches the lower portion of the
vertical asymptote from the left, whereas the graph approaches
the upper portion of the vertical asymptote from the right. Use
the table of function values found on page 23 to explain how
to determine whether a graph approaches a vertical asymptote
by dropping down or rising up.

3. In the text, we discussed the difference between graphing with
a fixed window versus an automatic window. Discuss the ad-
vantages and disadvantages of each. (Hint: Consider the case
of a first graph of a function you know nothing about and the
case of hoping to see the important details of a graph for which
you know the general shape.)

4. Examine the graph of y = x3 + 1

x
with each of the follow-

ing graphing windows: (a) −10 ≤ x ≤ 10, (b) −1000 ≤ x ≤
1000. Explain why the graph in (b) doesn’t show the details
that the graph in (a) does.

In exercises 1–30, sketch a graph of the function showing all
extrema, intercepts and asymptotes.

1. f (x) = x2 − 1 2. f (x) = 3 − x2

3. f (x) = x2 + 2x + 8 4. f (x) = x2 − 20x + 11

5. f (x) = x3 + 1 6. f (x) = 10 − x3

7. f (x) = x3 + 2x − 1 8. f (x) = x3 − 3x + 1

9. f (x) = x4 − 1 10. f (x) = 2 − x4

11. f (x) = x4 + 2x − 1 12. f (x) = x4 − 6x2 + 3

13. f (x) = x5 + 2 14. f (x) = 12 − x5

15. f (x) = x5 − 8x3 + 20x − 1 16. f (x) = x5 + 5x4 + 2x3 + 1

17. f (x) = 3

x − 1
18. f (x) = 4

x + 2

19. f (x) = 3x

x − 1
20. f (x) = 4x

x + 2

21. f (x) = 3x2

x − 1
22. f (x) = 4x2

x + 2

23. f (x) = 2

x2 − 4
24. f (x) = 6

x2 − 9

25. f (x) = 3

x2 + 4
26. f (x) = 6

x2 + 9

27. f (x) = x + 2

x2 + x − 6
28. f (x) = x − 1

x2 + 4x + 3

29. f (x) = 3x√
x2 + 4

30. f (x) = 2x√
x2 + 1

In exercises 31–38, find all vertical asymptotes.

31. f (x) = 3x

x2 − 4
32. f (x) = x + 4

x2 − 9

33. f (x) = 4x

x2 + 3x − 10
34. f (x) = x + 2

x2 − 2x − 15

35. f (x) = 4x

x2 + 4
36. f (x) = 3x√

x2 − 9

37. f (x) = x2 + 1

x3 + 3x2 + 2x
38. f (x) = 3x

x4 − 1

In exercises 39–42, a standard graphing window will not reveal
all of the important details of the graph. Adjust the graphing
window to find the missing details.

39. f (x) = 1
3 x3 − 1

400 x 40. f (x) = x4 − 11x3 + 5x − 2

41. f (x) = x
√

144 − x2

42. f (x) = 1
5 x5 − 7

8 x4 + 1
3 x3 + 7

2 x2 − 6x

In exercises 43–48, adjust the graphing window to identify all
vertical asymptotes.

43. f (x) = 3

x − 1
44. f (x) = 4x

x2 − 1
45. f (x) = 3x2

x2 − 1

46. f (x) = 2x

x + 4
47. f (x) = x2 − 1√

x4 + x
48. f (x) = 2x√

x2+x

In exercises 49–56, determine the number of (real) solutions.
Solve for the intersection points exactly if possible and estimate
the points if necessary.

49.
√

x − 1 = x2 − 1 50.
√

x2 + 4 = x2 + 2

51. x3 − 3x2 = 1 − 3x 52. x3 + 1 = −3x2 − 3x

53. (x2 − 1)2/3 = 2x + 1 54. (x + 1)2/3 = 2 − x

55. cos x = x2 − 1 56. sin x = x2 + 1

In exercises 57–62, use a graphing calculator or computer
graphing utility to estimate all zeros.

57. f (x) = x3 − 3x + 1 58. f (x) = x3 − 4x2 + 2

59. f (x) = x4 − 3x3 − x + 1 60. f (x) = x4 − 2x + 1

61. f (x) = x4 − 7x3 − 15x2 − 10x − 1410

62. f (x) = x6 − 4x4 + 2x3 − 8x − 2

63. Graph y = x2 with the graphing window −10 ≤ x ≤ 10,

−10 ≤ y ≤ 10, without drawing the x- and y-axes. Adjust the
graphing window for y = 2(x − 1)2 + 3 so that (without the
axes showing) the graph looks identical to that of y = x2.

64. Graph y = x2 with the graphing window −10 ≤ x ≤ 10,

−10 ≤ y ≤ 10. Separately graph y = x4 with the same graph-
ing window. Compare and contrast the graphs. Then graph the
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two functions on the same axes and carefully examine the dif-
ferences with −1 < x < 1 and x > 1.

65. In this exercise, you will find an equation describing all points
equidistant from the x-axis and the point (0, 2). First, see if
you can sketch a picture of what the curve through these points
ought to look like. For a point (x, y) that is on the curve, ex-
plain why

√
y2 = √

x2 + (y − 2)2. Square both sides of this
equation and solve for y. Identify the curve.

66. Find an equation describing all points equidistant from the
x-axis and (1, 4) (see exercise 65).

EXPLORATORY EXERCISES

1. Suppose a graphing calculator is set up with pixels cor-
responding to x = 0, 0.1, 0.2, 0.3, . . . , 2.0 and y = 0, 0.1,

0.2, 0.3, . . . , 4.0. For the function f (x) = x2, compute the
indicated function values and round off to give pixel coor-
dinates [e.g., the point (1.19, 1.4161) has pixel coordinates

(1.2, 1.4)]. (a) f (0.4), (b) f (0.39), (c) f (1.17), (d) f (1.20),
(e) f (1.8), (f) f (1.81). Repeat (c)–(d) if the graphing win-
dow is zoomed in so that x = 1.00, 1.01, . . . , 1.20 and y =
1.30, 1.31, . . . , 1.50. Repeat (e)–(f) if the graphing window
is zoomed in so that x = 1.800, 1.801, . . . , 1.820 and y =
3.200, 3.205, . . . , 3.300.

2. Graph y = x2 − 1, y = x2 + x − 1, y = x2 + 2x − 1, y = x2 −
x − 1 and y = x2 − 2x − 1 and other functions of the form
y = x2 + cx − 1. Describe the effect(s) a change in c has on
the graph.

3. Figures 0.24 and 0.25 provide a catalog of the possible types
of graphs of cubic polynomials. In this exercise, you will com-
pile a catalog of graphs of fourth-order polynomials (i.e., y =
ax4 + bx3 + cx2 + dx + e). Start by using your calculator or
computer to sketch graphs with different values of a, b, c, d and
e. Try y = x4, y = 2x4, y = −2x4, y = x4 + x3, y = x4 +
2x3, y = x4 − 2x3, y = x4 + x2, y = x4 − x2, y = x4 − 2x2,

y = x4 + x, y = x4 − x and so on. Try to determine what ef-
fect each constant has.

0.3 INVERSE FUNCTIONS

The notion of an inverse relationship is basic to many areas of science, although the term is
only infrequently used. The number of common inverse problems is immense. As only one
example, take the case of the electrocardiogram (EKG). In an EKG, technicians connect a
series of electrodes to a patient’s chest and use measurements of electrical activity on the
surface of the body to infer something about the electrical activity on the surface of the
heart. This is referred to as an inverse problem, since physicians are attempting to determine
what inputs (i.e., the electrical activity on the surface of the heart) cause an observed output
(the measured electrical activity on the surface of the chest).

f (x)

g(x)

x

Domain

y

Range

FIGURE 0.36
g(x) = f −1(x).

The mathematical notion of inverse is much the same as that described above. Given
an output (i.e., a value in the range of a given function), we wish to find the input (the value
in the domain) that produced the observed output. That is, given a y in the range of f , find
the x in the domain of f for which y = f (x). If we can do this, we say that x = f −1(y).
(See the illustration of the inverse function g(x) shown in Figure 0.36.)

y

x

8

4

2

�2

6

21�2

y � x3

FIGURE 0.37
Finding the x-value corresponding
to y = 8.

For instance, suppose that f (x) = x3 and y = 8. Can you find an x such that x3 = 8?
That is, can you find the x-value corresponding to y = 8 (see Figure 0.37)? Of course, you
know the solution of this particular equation: x = 3

√
8 = 2. In fact, in general, if x3 = y,

then x = 3
√

y. In light of this, we say that the cube root function is the inverse of f (x) = x3.
We use this first example of a pair of inverse functions to illustrate a property shared by all
inverse functions.

EXAMPLE 3.1 Two Functions That Reverse the Action
of Each Other

If f (x) = x3 and g(x) = x1/3, show that

f (g(x)) = x and g( f (x)) = x,

for all x .
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Solution For all real numbers x , we have

f (g(x)) = f (x1/3) = (x1/3)3 = x

and

g( f (x)) = g(x3) = (x3)1/3 = x . �

Notice in example 3.1 that the action of f undoes the action of g and vice versa. We
may take this as the definition of an inverse function (again, think of Figure 0.36). More
precisely, we have the following definition.

CAUTION

Pay close attention to the notation.
Notice that f −1(x) does not mean

1

f (x)
. The reciprocal of f (x) is

written as:

1

f (x)
= [ f (x)]−1.

DEFINITION 3.1

Assume that f and g have domains A and B, respectively, and that f (g(x)) is defined
for all x ∈ B and g( f (x)) is defined for all x ∈ A. If

f (g(x)) = x, for all x ∈ B and

g( f (x)) = x, for all x ∈ A,

we say that g is the inverse of f , written g = f −1. Equivalently, f is the inverse of g,
written f = g−1.

Observe that many familiar functions have no inverse.

EXAMPLE 3.2 A Function with No Inverse

Show that f (x) = x2 has no inverse on the interval (−∞, ∞).

y

x

4

8

12

20

2 4�2�4

FIGURE 0.38
y = x2.

Solution Notice that f (4) = 16 and f (−4) = 16. That is, there are two x-values that
produce the same y-value. So, if we were to try to define an inverse of f , how would we
define f −1(16)? Look at the graph of y = x2 (see Figure 0.38) to see what the problem
is. For each y > 0, there are two x-values for which y = x2. Because of this, the function
f does not have an inverse. �

REMARK 3.1

For f (x) = x2, it is tempting to jump to the conclusion that g(x) = √
x is the inverse

of f (x). Notice that although f (g(x)) = (
√

x)2 = x for all x ≥ 0 (i.e., for all x in the
domain of g(x)), it is not generally true that g( f (x)) =

√
x2 = x . In fact, this last

equality holds only for x ≥ 0. (Recall that
√

x2 = |x |.) However, for f (x) = x2

restricted to the domain x ≥ 0, we do have that f −1(x) = √
x .

As we saw in example 3.2, a function that produces any given y-value for two or
more different x-values does not have an inverse. That is, for a function to have an inverse,
different x’s must correspond to different y’s.

DEFINITION 3.2

A function f is called one-to-one when for every y ∈ Range{ f }, there is exactly one
x ∈ Domain{ f } for which y = f (x).
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It is also most helpful to think of the concept of one-to-one in graphical terms. Notice
that a function f is one-to-one if and only if every horizontal line intersects the graph in at
most one point. This is usually referred to as the horizontal line test. We illustrate this in
Figures 0.39a and 0.39b. One can then prove the following result.

REMARK 3.2

Observe that an equivalent
definition of one-to-one is the
following. A function f (x) is
one-to-one if and only if the
equality f (a) = f (b) implies
a = b. This version of the
definition is often useful for
proofs involving one-to-one
functions.

x
a b

y � f (x)

y
y

x
a

y � f (x)

FIGURE 0.39a

f (a) = f (b), for a �= b. So, f
does not pass the horizontal
line test and is not one-to-one.

FIGURE 0.39b

Every horizontal line intersects
the curve in at most one point.
So, f passes the horizontal line
test and is one-to-one.

THEOREM 3.1

A function f has an inverse if and only if it is one-to-one.

This simply says that every one-to-one function has an inverse and every function that
has an inverse is one-to-one. However, it says nothing about how to find an inverse. For
very simple functions, we can find inverses by solving equations.

EXAMPLE 3.3 Finding an Inverse Function

Find the inverse of f (x) = x3 − 5.

y

x
2 4�2�4

�20

�40

20

40

FIGURE 0.40
y = x3 − 5. Solution Note that it is not entirely clear from the graph (see Figure 0.40) whether or

not f passes the horizontal line test. To find the inverse function, write y = f (x) and
solve for x (i.e., solve for the input x that produced the observed output y). We have

y = x3 − 5.

Adding 5 to both sides and taking the cube root gives us

(y + 5)1/3 = (x3)1/3 = x .

So, we have that x = f −1(y) = (y + 5)1/3. Reversing the variables x and y (think about
why this makes sense), we have

f −1(x) = (x + 5)1/3. �

EXAMPLE 3.4 A Function That Is Not One-to-One

Show that f (x) = 10 − x4 is not one-to-one.

y

x

�40

�60

�20

20

�80

�100

2 4�2�4

FIGURE 0.41
y = 10 − x4.

Solution You can see from a graph (see Figure 0.41) that f is not one-to-one; for
instance, f (1) = f (−1) = 9. Consequently, f does not have an inverse. �
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Most often, we cannot find a formula for an inverse function and must be satisfied with
simply knowing that the inverse function exists. Example 3.5 is typical of this situation.

EXAMPLE 3.5 Finding Function Values for an Inverse Function

Given that f (x) = x5 + 8x3 + x + 1 has an inverse, find f −1(1) and f −1(11).

y

x
321�3 �2 �1

�3

�2

�1

2

1

3

FIGURE 0.42
y = x5 + 8x3 + x + 1.

Solution First, notice that from the graph shown in Figure 0.42, the function looks like
it might be one-to-one, but how could you be certain of this? (Remember that graphs
can be deceptive!) Until we develop some calculus, we will be unable to verify this.
Ideally, we would show that f has an inverse by finding a formula for the inverse, as in
example 3.3. However, in this case, we must solve the equation

y = x5 + 8x3 + x + 1

for x . Think about this for a moment; you should realize that you do not know how to
solve for x in terms of y. (Don’t worry; the authors don’t know how to do this, either.)
So, for the moment, we will need to assume that the inverse exists, as indicated in the
instructions.

Turning to the problem of finding f −1(1) and f −1(11), you might wonder if this is
possible, since we were unable to find a formula for f −1(x). While it’s certainly true that
we have no such formula, you might observe that f (0) = 1, so that f −1(1) = 0. By trial
and error, you might also discover that f (1) = 11 and so, f −1(11) = 1. �

y

x
ab

a

b

y � x

(b, a)

(a, b)

FIGURE 0.43
Reflection through y = x .

In example 3.5, we examined a function that has an inverse, although we could not find
that inverse algebraically. Even when we can’t find an inverse function explicitly, we can
say something graphically. Notice that if (a, b) is a point on the graph of y = f (x) and f
has an inverse, f −1, then since

b = f (a),

we have that

f −1(b) = f −1( f (a)) = a.

That is, (b, a) is a point on the graph of y = f −1(x). This tells us a great deal about the
inverse function. In particular, we can immediately obtain any number of points on the graph
of y = f −1(x), simply by inspection. Further, notice that the point (b, a) is the reflection
of the point (a, b) through the line y = x (see Figure 0.43). It now follows that given the
graph of any one-to-one function, you can draw the graph of its inverse simply by reflecting
the entire graph through the line y = x . In example 3.6, we illustrate the symmetry of a
function and its inverse.

EXAMPLE 3.6 The Graph of a Function and Its Inverse

Draw a graph of f (x) = x3 and its inverse.

y

x

�1

1

1�1

y � x

y � x3

y � x1/3

FIGURE 0.44
y = x3 and y = x1/3.

Solution From example 3.1, the inverse of f (x) = x3 is f −1(x) = x1/3. Notice the
symmetry of their graphs shown in Figure 0.44. �

Observe that we can use this symmetry principle to draw the graph of an inverse
function, even when we don’t have a formula for that function (see Figure 0.45).
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y

x

y � f (x)

y � f �1(x)

y � x

y

x
321�3 �2 �1

�3

�2

�1

2

1

3
y � f (x) y � x

y � f �1(x)

FIGURE 0.45

Graph of f and f −1.
FIGURE 0.46

y = f (x) and y = f −1(x).

EXAMPLE 3.7 Drawing the Graph of an Unknown Inverse Function

Draw a graph of f (x) = x5 + 8x3 + x + 1 and its inverse.

Solution In example 3.5, we were unable to find a formula for the inverse function.
Despite this, we can draw a graph of f −1 with ease. We simply take the graph of y = f (x)
seen in Figure 0.42 and reflect it across the line y = x . The result is shown in Figure 0.46.
(When we introduce parametric equations in section 0.7, we will see a clever way to draw
this graph with a graphing calculator.) �

In example 3.8, we apply our theoretical knowledge of inverse functions in a medical
setting.

EXAMPLE 3.8 Determining the Proper Dosage of a Drug

Suppose that the injection of a certain drug raises the level of a key hormone in the body.
Physicians want to determine the dosage that produces a healthy hormone level. Dosages
of 1, 2, 3 and 4 mg produce hormone levels of 12, 20, 40 and 76, respectively. If the
desired hormone level is 30, what is the proper dosage?

y

x

20

40

60

80

1 2 3 4

FIGURE 0.47a
Hormone data.

20

40

60

80

1 2 3 4

y

x

FIGURE 0.47b
Approximate curve.

Solution A plot of the points (1, 12), (2, 20), (3, 40) and (4, 76) summarizes the data
(see Figure 0.47a). The problem is an inverse problem: given y = 30, what is x? It is
tempting to argue the following: since 30 is halfway between 20 and 40, the x-value
should be halfway between 2 and 3: x = 2.5. This method of solution is called linear
interpolation, since the point x = 2.5, y = 30 lies on the line through the points (2, 20)
and (3, 40). While this provides a primitive estimate of the needed dosage, we should be
able to do better. After all, this estimate does not take into account all of the information
we have. (Think about what’s missing here.) The points in Figure 0.47a suggest a curve
that is curving upward. If this is the case, x = 2.6 or x = 2.7 may be a better estimate of
the required dosage. In Figure 0.47b, we have sketched a smooth curve through the data
points and indicated a graphical solution of the problem. There are numerous more
advanced techniques (e.g., polynomial interpolation) developed by mathematicians to
make the estimate of such quantities as accurate as possible. �
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EXERCISES 0.3

WRITING EXERCISES

1. Explain in words (and a picture) why the following is true: if
f (x) is increasing for all x , then f has an inverse.

2. Suppose the graph of a function passes the horizontal line test.
Explain why you know that the function has an inverse (defined
on the range of the function).

3. Radar works by bouncing a high-frequency electromagnetic
pulse off of a moving object, then measuring the disturbance
in the pulse as it is bounced back. Explain why this is an inverse
problem by identifying the input and output.

4. Each human disease has a set of symptoms associated with
it. Physicians attempt to solve an inverse problem: given the
symptoms, they try to identify the disease causing the symp-
toms. Explain why this is not a well-defined inverse problem
(i.e., logically it is not always possible to correctly identify
diseases from symptoms alone).

In exercises 1–4, show that f (g(x)) � x and g( f (x)) � x for
all x:

1. f (x) = x5 and g(x) = x1/5

2. f (x) = 4x3 and g(x) = 1
4 x1/3

3. f (x) = 2x3 + 1 and g(x) = 3

√
x − 1

2

4. f (x) = 1

x + 2
and g(x) = 1 − 2x

x
(x �= 0, x �= −2)

In exercises 5–12, determine whether or not the function is one-
to-one. If it is, find the inverse and graph both the function and
its inverse.

5. f (x) = x3 − 2 6. f (x) = x3 + 4

7. f (x) = x5 − 1 8. f (x) = x5 + 4

9. f (x) = x4 + 2 10. f (x) = x4 − 2x − 1

11. f (x) = √
x3 + 1 12. f (x) = √

x2 + 1

In exercises 13–18, assume that the function has an inverse.
Without solving for the inverse, find the indicated function
values.

13. f (x) = x3 + 4x − 1, (a) f −1(−1), (b) f −1(4)

14. f (x) = x3 + 2x + 1, (a) f −1(1), (b) f −1(13)

15. f (x) = x5 + 3x3 + x , (a) f −1(−5), (b) f −1(5)

16. f (x) = x5 + 4x − 2, (a) f −1(38), (b) f −1(3)

17. f (x) = √
x3 + 2x + 4, (a) f −1(4), (b) f −1(2)

18. f (x) = √
x5 + 4x3 + 3x + 1, (a) f −1(3), (b) f −1(1)

In exercises 19–22, use the given graph to graph the inverse
function.

19. y

x
2 4�2�4

�4

�2

2

4

20. y

x
2 4�2�4

�4

�2

2

4

21. y

x
2 4�2�4

�4

�2

2

4
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22. y

x
2 4�2�4

�4

�2

2

4

In exercises 23–26, use linear interpolation as in example 3.8
to estimate f −1(b). Use the apparent curving of the graph to
conjecture whether the estimate is too high or too low.

23. (1, 12), (2, 20), (3, 26), (4, 30), b = 23

24. (1, 12), (2, 10), (3, 6), (4, 0), b = 8

25. (1, 12), (2, 6), (3, 2), (4, 0), b = 5

26. (1, 12), (2, 20), (3, 36), (4, 50), b = 32

In exercises 27–36, use a graph to determine if the function is
one-to-one. If it is, graph the inverse function.

27. f (x) = x3 − 5

28. f (x) = x2 − 3

29. f (x) = x3 + 2x − 1

30. f (x) = x3 − 2x − 1

31. f (x) = x5 − 3x3 − 1

32. f (x) = x5 + 4x3 − 2

33. f (x) = 1

x + 1

34. f (x) = 4

x2 + 1

35. f (x) = x

x + 4

36. f (x) = x√
x2 + 4

Exercises 37–46 involve inverse functions on restricted domains.

37. Show that f (x) = x2(x ≥ 0) and g(x) = √
x(x ≥ 0) are in-

verse functions. Graph both functions.

38. Show that f (x) = x2 − 1 (x ≥ 0) and g(x) = √
x − 1 (x ≥ − 1)

are inverse functions. Graph both functions.

39. Graph f (x) = x2 for x ≤ 0 and verify that it is one-to-one.
Find its inverse. Graph both functions.

40. Graph f (x) = x2 + 2 for x ≤ 0 and verify that it is one-to-one.
Find its inverse. Graph both functions.

41. Graph f (x) = (x − 2)2 and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that inter-
val. Graph both functions.

42. Graph f (x) = (x + 1)4 and find an interval on which it is one-
to-one. Find the inverse of the function restricted to that inter-
val. Graph both functions.

43. Graph f (x) = √
x2 − 2x and find an interval on which it is

one-to-one. Find the inverse of the function restricted to that
interval. Graph both functions.

44. Graph f (x) = x

x2 − 4
and find an interval on which it is one-to-

one. Find the inverse of the function restricted to that interval.
Graph both functions.

45. Graph f (x) = sin x and find an interval on which it is one-to-
one. Find the inverse of the function restricted to that interval.
Graph both functions.

46. Graph f (x) = cos x and find an interval on which it is one-to-
one. Find the inverse of the function restricted to that interval.
Graph both functions.

In exercises 47–52, discuss whether or not the function described
has an inverse.

47. The income of a company varies with time.

48. The height of a person varies with time.

49. For a dropped ball, its height varies with time.

50. For a ball thrown upward, its height varies with time.

51. The shadow made by an object depends on its three-
dimensional shape.

52. The number of calories burned depends on how fast a person
runs.

53. Suppose that your boss informs you that you have been awarded
a 10% raise. The next week, your boss announces that due to
circumstances beyond her control, all employees will have their
salaries cut by 10%. Are you as well off now as you were two
weeks ago? Show that increasing by 10% and decreasing by
10% are not inverse processes. Find the inverse for adding 10%.
(Hint: To add 10% to a quantity you can multiply by 1.10.)

EXPLORATORY EXERCISES

1. Find all values of k such that f (x) = x3 + kx + 1 is one-to-
one.

2. Find all values of k such that f (x) = x3 + 2x2 + kx − 1
is one-to-one.
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0.4 TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS

Many phenomena encountered in your daily life are waves. For instance, music is transmit-
ted from radio stations in the form of electromagnetic waves. Your radio receiver decodes
these electromagnetic waves and causes a thin membrane inside the speakers to vibrate.
This vibration, in turn, creates pressure waves in the air. When these waves reach your ears,
you hear the music from your radio (see Figure 0.48). Each of these waves is periodic,
meaning that the basic shape of the wave is repeated over and over again. The mathematical
description of such phenomena involves periodic functions, the most familiar of which are
the trigonometric functions. First, we remind you of a basic definition.

FIGURE 0.48
Radio and sound waves.

NOTES
When we discuss the period of a
function, we most often focus on
the fundamental period.

DEFINITION 4.1

A function f is periodic of period T if

f (x + T ) = f (x)

for all x such that x and x + T are in the domain of f . The smallest such number
T > 0 is called the fundamental period.

y

x
u

u

(cos u, sin u )

sin u

cos u

1

FIGURE 0.49
Definition of sin θ and
cos θ : cos θ = x and sin θ = y.

There are several equivalent ways of defining the sine and cosine functions. Regardless
of how you were originally taught these functions, we want to emphasize a simple defini-
tion from which you can easily reproduce many of the basic properties of these functions.
Referring to Figure 0.49, begin by drawing the unit circle x2 + y2 = 1. Let θ be the angle
measured (counterclockwise) from the positive x-axis to the line segment joining the point
(x, y) on the circle and the origin. Here, we measure θ in radians, where the radian measure
of the angle θ is the length of the arc indicated in the figure. Again referring to Figure 0.49,
we define sin θ to be the y-coordinate of the point on the circle and cos θ to be the
x-coordinate of the point. Notice that from this definition, it follows that sin θ and cos θ are
defined for all values of θ . That is, the domains of f (θ ) = sin θ and of g(θ ) = cos θ are
both −∞ < θ < ∞ (the entire real line). Observe that the range for each of these functions
is the interval [−1, 1].

Note that since the circumference of a circle (C = 2πr ) of radius 1 is 2π , we have that
360◦ corresponds to 2π radians. Similarly, 180◦ corresponds to π radians, 90◦ corresponds
to π/2 radians, and so on. In the table that follows, we list some common angles as measured
in degrees together with the corresponding radian measure.
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REMARK 4.1

Unless otherwise noted, we
always measure angles in radians.

Angle in degrees 0◦ 30◦ 45◦ 60◦ 90◦ 135◦ 180◦ 270◦ 360◦

Angle in radians 0
π

6

π

4

π

3

π

2

3π

4
π

3π

2
2π

THEOREM 4.1

The functions f (θ ) = sin θ and g(θ ) = cos θ are periodic, of period 2π.

PROOF

Since a complete circle is 2π radians, adding 2π to any angle takes you all the way around
the circle and back to the same point (x, y). This says that

sin (θ + 2π ) = sin θ

and

cos (θ + 2π ) = cos θ,

for all values of θ . Furthermore, 2π is the smallest angle for which this is true.

y

�1

1

q w�w r�r �q
x

y

�1

1

p 2p�2p �p
x

FIGURE 0.50a
y = sin x .

FIGURE 0.50b
y = cos x .

You are likely already familiar with the graphs of f (x) = sin x and g(x) = cos x shown
in Figures 0.50a and 0.50b, respectively.

x sin x cos x

0 0 1
π

6
1
2

√
3

2

π

4

√
2

2

√
2

2

π

3

√
3

2
1
2

π

2 1 0

2π

3

√
3

2 − 1
2

3π

4

√
2

2 −
√

2
2

5π

6
1
2 −

√
3

2

π 0 −1
3π

2 −1 0

2π 0 1

Notice that you could slide the graph of y = sin x slightly to the left or right and get
an exact copy of the graph of y = cos x . Specifically, you should observe that

sin

(
x + π

2

)
= cos x .

REMARK 4.2

Instead of writing (sin θ )2 or (cos θ)2, we usually use the notation sin2 θ and cos2 θ ,
respectively.

The accompanying table lists some common values of sine and cosine. Notice that
many of these can be found by closely examining Figure 0.49.
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EXAMPLE 4.1 Solving Equations Involving Sines and Cosines

Find all solutions of the equations (a) 2 sin x − 1 = 0 and (b) cos2 x − 3 cos x + 2 = 0.

Solution For (a), notice that 2 sin x − 1 = 0 if 2 sin x = 1 or sin x = 1
2 . From the unit

circle, we find that sin x = 1
2 if x = π

6 or x = 5π
6 . Since sin x has period 2π , additional

solutions are π
6 + 2π, 5π

6 + 2π, π
6 + 4π and so on. A convenient way of indicating that

any integer multiple of 2π can be added to either solution is to write: x = π
6 + 2nπ or

x = 5π
6 + 2nπ , for any integer n. Part (b) may look rather difficult at first. However,

notice that it looks like a quadratic equation using cos x instead of x . With this clue, you
can factor the left-hand side to get

0 = cos2 x − 3 cos x + 2 = (cos x − 1)(cos x − 2),

from which it follows that either cos x = 1 or cos x = 2. Since −1 ≤ cos x ≤ 1 for all
x , the equation cos x = 2 has no solution. However, we get cos x = 1 if x = 0, 2π or
any integer multiple of 2π . Notice that we can summarize all the solutions by writing
x = 2nπ , for any integer n. �

We now give definitions of the remaining four trigonometric functions.

DEFINITION 4.2

The tangent function is defined by tan x = sin x

cos x
.

The cotangent function is defined by cot x = cos x

sin x
.

The secant function is defined by sec x = 1

cos x
.

The cosecant function is defined by csc x = 1

sin x
.

We give graphs of these functions in Figures 0.51a, 0.51b, 0.51c and 0.51d. Notice in each
graph the locations of the vertical asymptotes. For the “co” functions cot x and csc x , the
division by sin x causes vertical asymptotes at 0, π , 2π and so on (where sin x = 0). For
tan x and sec x , the division by cos x produces vertical asymptotes at π/2, 3π/2, 5π/2 and
so on (where cos x = 0). Once you have the vertical asymptotes in place, the graphs are
relatively easy to draw.

p 2p�2p �p w�w q�q

y

x

p 2p�2p �p w�w q�q

y

x

FIGURE 0.51a
y = tan x .

FIGURE 0.51b
y = cot x .
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y

x
1

�1

FIGURE 0.51c
y = sec x .

FIGURE 0.51d
y = csc x .

Notice that tan x and cot x are periodic, of period π , while sec x and csc x are periodic,
of period 2π .

REMARK 4.3

Most calculators have keys for the functions sin x, cos x , and tan x , but not for the
other three trigonometric functions. This reflects the central role that sin x, cos x and
tan x play in applications. To calculate function values for the other three
trigonometric functions, you can simply use the identities

cot x = 1

tan x
, sec x = 1

cos x
and csc x = 1

sin x
.

It is important to learn the effect of slight modifications of these functions. We present
a few ideas here and in the exercises.

EXAMPLE 4.2 Altering Amplitude and Period

Graph y = 2 sin x and y = sin 2x and describe how each differs from the graph of y =
sin x (see Figure 0.52a).

Solution The graph of y = 2 sin x is given in Figure 0.52b. Notice that this graph is
similar to the graph of y = sin x , except that the y-values oscillate between −2 and 2

w

�w q

�q

y

x

�2

�1

1

2

w

�w q

�q

y

x

�2

�1

1

2

y

x

�2

�1

1

2

�p�2p p 2p

FIGURE 0.52a
y = sin x .

FIGURE 0.52b
y = 2 sin x .

FIGURE 0.52c
y = sin (2x).
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instead of −1 and 1. Next, the graph of y = sin 2x is given in Figure 0.52c. In this case,
the graph is similar to the graph of y = sin x , except that the period is π instead of 2π .
(The oscillations occur twice as fast.) �

The results in example 4.2 can be generalized. For A > 0, the graph of y = A sin x
oscillates between y = −A and y = A. In this case, we call A the amplitude of the sine
curve. Notice that for any positive constant c, the period of y = sin cx is 2π/c. Similarly,
for the function A cos cx , the amplitude is A and the period is 2π/c.

The sine and cosine functions can be used to model sound waves. A pure tone (think of
a single flute note) is a pressure wave described by the sinusoidal function A sin ct . (Here,
we are using the variable t , since the air pressure is a function of time.) The amplitude A
determines how loud the tone is perceived to be, and the period determines the pitch of the
note. In this setting, it is usually convenient to talk about the frequency f = c/2π rather
than the period. As you may know, the higher the frequency is, the higher the pitch of the
note will be. (Frequency is measured in hertz, where 1 hertz equals 1 cycle per second.)
Note that the frequency is simply the reciprocal of the period.

EXAMPLE 4.3 Finding Amplitude, Period, and Frequency

Find the amplitude, period, and frequency of (a) f (x) = 4 cos 3x and (b) g(x) =
2 sin(x/3).

Solution (a) For f (x), the amplitude is 4, the period is 2π/3 and the frequency is
3/(2π ) (see Figure 0.53a). (b) For g(x), the amplitude is 2, the period is 2π/(1/3) = 6π

and the frequency is 1/(6π ) (see Figure 0.53b).

y

2p�2p

�4

4

i o�i�o
x

y

x
2p 3pp�2p�3p �p

�2

2

FIGURE 0.53a
y = 4 cos 3x .

FIGURE 0.53b
y = 2 sin (x/3).

�

As you will recall from your earlier study of trigonometry, there are numerous formulas,
or identities, that are helpful in manipulating the trigonometric functions. You should
observe from the definition of sin θ and cos θ (see Figure 0.49) that the Pythagorean Theorem
gives us the familiar identity

sin2 θ + cos2 θ = 1,

since the hypotenuse of the indicated triangle is 1. This holds for any angle θ .
We list several important identities in Theorem 4.2.
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THEOREM 4.2

For any real numbers α and β, the following identities hold:

sin (α + β) = sin α cos β + sin β cos α (4.1)

cos (α + β) = cos α cos β − sin α sin β (4.2)

sin2 α = 1
2 (1 − cos 2α) (4.3)

cos2 α = 1
2 (1 + cos 2α). (4.4)

From the basic identities summarized in Theorem 4.2, numerous other useful identities
can be derived. We derive two of these in example 4.4.

EXAMPLE 4.4 Deriving New Trigonometric Identities

Derive the identities sin 2θ = 2 sin θ cos θ and cos 2θ = cos2 θ − sin2 θ .

Solution These can be obtained from formulas (4.1) and (4.2), respectively, by sub-
stituting α = θ and β = θ . Alternatively, the identity for cos 2θ can be obtained by
subtracting equation (4.3) from equation (4.4). �

y

x
�q q

�1

1

FIGURE 0.54
y = sin x on

[− π

2 , π

2

]
.

The Inverse Trigonometric Functions
We can expand the set of functions available to you by defining inverses to the trigonometric
functions. To get started, let’s again look at a graph of y = sin x (see Figure 0.50a). Notice
that we cannot define an inverse function, since sin x is not one-to-one. Although the sine
function as we have defined it does not have an inverse function, we can define one by
modifying the domain of the sine. We do this by choosing a portion of the sine curve that
passes the horizontal line test. In particular, we select an interval of x-values on which the
sine increases from −1 to 1, without repeating any of those values. If we restrict the domain
to the interval

[−π
2 , π

2

]
, then y = sin x is one-to-one there (see Figure 0.54) and hence, has

an inverse. We thus define the inverse sine function by

y = sin−1 x if and only if sin y = x and −π
2 ≤ y ≤ π

2 . (4.5)

It is convenient to think of this definition as follows. If y = sin−1 x , then y is the angle(
between − π

2 andπ
2

)
for which sin y = x . You should note that we could have selected any

interval on which sin x is one-to-one, but
[−π

2 , π
2

]
is the most convenient. To see that these

are indeed inverse functions, you should observe that

sin (sin−1 x) = x, for all x ∈ [−1, 1]

and

sin−1(sin x) = x, for all x ∈
[

− π

2
,
π

2

]
. (4.6)

Read equation (4.6) very carefully. It does not say that sin−1(sin x) = x for all x , but rather,
only for those in the restricted domain,

[−π
2 , π

2

]
. For instance, sin−1(sin π ) �= π , since

sin−1(sin π ) = sin−1(0) = 0.

REMARK 4.4

Mathematicians often use the
notation arcsin x in place of
sin−1 x . People will read sin−1 x
interchangeably as “inverse sine
of x” or “arcsine of x .”
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EXAMPLE 4.5 Evaluating the Inverse Sine Function

Evaluate (a) sin−1
(√

3
2

)
and (b) sin−1

(− 1
2

)
.

Solution For (a), we look for the angle θ in the interval
[−π

2 , π
2

]
for which sin θ =

√
3

2 .

Note that since sin
(

π
3

) =
√

3
2 and π

3 ∈ [−π
2 , π

2

]
, we have that sin−1

(√
3

2

)
= π

3 . For

(b), note that sin
(−π

6

) = − 1
2 and −π

6 ∈ [−π
2 , π

2

]
. Thus,

sin−1

(
−1

2

)
= −π

6
.
�

y

x

�q

q

1�1

FIGURE 0.55
y = sin−1 x .

y

x
q p

�1

1

FIGURE 0.56
y = cos x on [0, π ].

Judging by the preceding two examples, you might think that (4.5) is a roundabout
way of defining a function. If so, you’ve got the idea exactly. In fact, we want to emphasize
that what we know about the inverse sine function is principally through reference to the
sine function. We will not have any other definition of arcsine, nor are there any algebraic
formulas for this function. (These things are true of most inverse functions.) Further, you
should recall from our discussion in section 0.3 that we can draw a graph of y = sin−1 x
simply by reflecting the graph of y = sin x on the interval

[−π
2 , π

2

]
(from Figure 0.54)

through the line y = x (see Figure 0.55).
Turning to y = cos x , can you think of how to restrict the domain to make the function

one-to-one? Notice that restricting the domain to the interval
[−π

2 , π
2

]
, as we did for the

inverse sine function will not work here. (Why not?) The simplest way to do this is to
restrict its domain to the interval [0, π ] (see Figure 0.56). Consequently, we define the
inverse cosine function by

y = cos−1 x if and only if cos y = x and 0 ≤ y ≤ π.

Note that here, we have

cos (cos−1 x) = x, for all x ∈ [−1, 1]

and

cos−1(cos x) = x, for all x ∈ [0, π ].

As with the definition of arcsine, it is helpful to think of cos−1 x as that angle θ in [0, π ] for
which cos θ = x . As with sin−1 x , it is common to use cos−1 x and arccos x interchangeably.

EXAMPLE 4.6 Evaluating the Inverse Cosine Function

Evaluate (a) cos−1(0) and (b) cos−1
(
−

√
2

2

)
.

Solution For (a), you will need to find that angle θ in [0, π ] for which cos θ = 0. It’s
not hard to see that cos−1(0) = π

2 . If you calculate this on your calculator and get 90,
your calculator is in degrees mode. In this event, you should immediately change it to
radians mode. For (b), look for the angle θ ∈ [0, π ] for which cos θ = −

√
2

2 . Notice that

cos
(

3π
4

) = −
√

2
2 and 3π

4 ∈ [0, π ]. Consequently,

cos−1

(
−

√
2

2

)
= 3π

4
.

�

y

x
1�1

q

p

FIGURE 0.57
y = cos−1 x .

Once again, we obtain the graph of this inverse function by reflecting the graph of y =
cos x on the interval [0, π ] (seen in Figure 0.56) through the line y = x (see Figure 0.57).
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We can define inverses for each of the four remaining trigonometric functions in similar
ways. For y = tan x , we restrict the domain to the interval

(−π
2 , π

2

)
. Think about why the

endpoints of this interval are not included (see Figure 0.58). Having done this, you should
readily see that we define the inverse tangent function by

y = tan−1 x if and only if tan y = x and −π
2 < y < π

2 .

The graph of y = tan−1 x is then as seen in Figure 0.59, found by reflecting the graph in
Figure 0.58 through the line y = x .

q�q

�6

�4

�2

2

4

6

y

x

y

x

�q

q

4 62�6 �4 �2

FIGURE 0.58
y = tan x on

(− π

2 , π

2

)
.

FIGURE 0.59
y = tan−1 x .

EXAMPLE 4.7 Evaluating an Inverse Tangent

Evaluate tan−1(1).

Solution You must look for the angle, θ on the interval
(−π

2 , π
2

)
for which tan θ = 1.

This is easy enough. Since tan
(

π
4

) = 1 and π
4 ∈ (−π

2 , π
2

)
, we have that tan−1(1) = π

4 . �

y

x
p

�10

�5

�1

5

1

10

q

FIGURE 0.60
y = sec x on [0, π ].

We now turn to defining an inverse for sec x . First, we must issue a disclaimer. As
we have indicated, there are any number of ways to suitably restrict the domains of the
trigonometric functions in order to make them one-to-one. With the first three we’ve seen,
there has been an obvious choice of how to do this and there is general agreement among
mathematicians on the choice of these intervals. In the case of sec x , this is not true. There are
several reasonable ways in which to suitably restrict the domain and different authors restrict
these differently. We have (arbitrarily) chosen to restrict the domain to be

[
0, π

2

) ∪ (
π
2 , π

]
.

You might initially think that this looks strange. Why not use all of [0, π ]? You need only
think about the definition of sec x to see why we needed to exclude the point x = π

2 . See
Figure 0.60 for a graph of sec x on this domain.

(
Note the vertical asymptote at x = π

2 .
)

Consequently, we define the inverse secant function by

y = sec−1 x if and only if sec y = x and y ∈ [
0, π

2

) ∪ (
π
2 , π

]
.

y

x

q

1051�5 �1�10

p

FIGURE 0.61
y = sec−1 x . A graph of sec−1 x is shown in Figure 0.61.
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EXAMPLE 4.8 Evaluating an Inverse Secant

Evaluate sec−1(−√
2).

Solution You must look for the angle θ with θ ∈ [
0, π

2

) ∪ (
π
2 , π

]
, for which sec θ =

−√
2. Notice that if sec θ = −√

2, then cos θ = − 1√
2

= −
√

2
2 . Recall from example 4.6

that cos 3π
4 = −

√
2

2 . Further, the angle 3π
4 is in the interval

(
π
2 , π

]
and so, sec−1(−√

2) =
3x
4 . �

Calculators do not usually have built-in functions for sec x or sec−1 x . In this case, you
must convert the desired secant value to a cosine value and use the inverse cosine function,
as we did in example 4.8.

Function Domain Range

sin−1 x [−1, 1]
[− π

2 , π

2

]
cos−1 x [−1, 1] [0, π ]

tan−1 x (−∞, ∞)
(− π

2 , π

2

)

REMARK 4.5

We can likewise define inverses to
cot x and csc x . As these functions
are used only infrequently, we
will omit them here and examine
them in the exercises.

We summarize the three main inverse trigonometric functions in the margin.
In many applications, we need to calculate the length of one side of a right triangle

using the length of another side and an acute angle (i.e., an angle between 0 and π
2 radians).

We can do this rather easily, as in example 4.9.

EXAMPLE 4.9 Finding the Height of a Tower

A person 100 feet from the base of a water tower measures an angle of 60◦ from the
ground to the top of the tower (see Figure 0.62). (a) Find the height of the tower. (b) What
angle is measured if the person is 200 feet from the base?

h

100 ftcos u

sin u

u

1

FIGURE 0.62
Height of a tower.

Solution For (a), we first convert 60◦ to radians:

60◦ = 60
π

180
= π

3
radians.

We are given that the base of the triangle in Figure 0.62 is 100 feet. We must now compute
the height of the tower h. Using the similar triangles indicated in Figure 0.62, we have that

sin θ

cos θ
= h

100
,

so that the height of the tower is

h = 100
sin θ

cos θ
= 100 tan θ = 100 tan

π

3
= 100

√
3 ≈ 173 feet.

For part (b), the similar triangles in Figure 0.62 give us

tan θ = h

200
= 100

√
3

200
=

√
3

2
.

Since 0 < θ <
π

2
, we have that

θ = tan−1

(√
3

2

)
≈ 0.7137 radians (about 41 degrees).

�

In example 4.10, we simplify expressions involving both trigonometric and inverse
trigonometric functions.

EXAMPLE 4.10 Simplifying Expressions Involving Inverse
Trigonometric Functions

Simplify (a) sin (cos−1 x) and (b) tan (cos−1 x).
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Solution Do not look for some arcane formula to help you out. Think first: cos−1 x is
the angle (call it θ ) for which x = cos θ . First, consider the case where x > 0. Looking
at Figure 0.63, we have drawn a right triangle, with hypotenuse 1 and adjacent angle θ .
From the definition of the sine and cosine, then, we have that the base of the triangle is
cos θ = x and the altitude is sin θ , which by the Pythagorean Theorem is

sin (cos−1 x) = sin θ =
√

1 − x2.

Wait! We have not yet finished part (a). Figure 0.63 shows 0 < θ < π
2 , but by definition,

θ = cos−1 x could range from 0 to π . Does our answer change if π
2 < θ < π? To see that

it doesn’t change, note that if 0 ≤ θ ≤ π , then sin θ ≥ 0. From the Pythagorean identity
sin2 θ + cos2 θ = 1, we get

sin θ = ±
√

1 − cos2 θ = ±
√

1 − x2.

Since sin θ ≥ 0, we must have

sin θ =
√

1 − x2,

for all values of x . For part (b), you can read from Figure 0.63 that

tan (cos−1 x) = tan θ = sin θ

cos θ
=

√
1 − x2

x
.

Note that this last identity is valid, regardless of whether x = cos θ is positive or
negative. �

u � cos�1x

sin u � �1 � x2

1

cos u � x

FIGURE 0.63
θ = cos−1 x .

EXERCISES 0.4

WRITING EXERCISES

1. Many students are comfortable using degrees to measure angles
and don’t understand why they must learn radian measures. As
discussed in the text, radians directly measure distance along
the unit circle. Distance is an important aspect of many applica-
tions. In addition, we will see later that many calculus formulas
are simpler in radians form than in degrees. Aside from famil-
iarity, discuss any and all advantages of degrees over radians.
On balance, which is better?

2. A student graphs f (x) = cos x on a graphing calculator and
gets what appears to be a straight line at height y = 1 instead of
the usual cosine curve. Upon investigation, you discover that
the calculator has graphing window −10 ≤ x ≤ 10, −10 ≤
y ≤ 10 and is in degrees mode. Explain what went wrong and
how to correct it.

3. Inverse functions are necessary for solving equations. The re-
stricted range we had to use to define inverses of the trigonomet-
ric functions also restricts their usefulness in equation-solving.
Explain how to use sin−1 x to find all solutions of the equation
sin u = x .

4. Discuss how to compute sec−1 x, csc−1x and cot−1 x on a cal-
culator that only has built-in functions for sin−1 x, cos−1 x and
tan−1 x .

5. In example 4.3, f (x) = 4 cos 3x has period 2π/3 and g(x) =
2 sin (x/3) has period 6π . Explain why the sum h(x) =
4 cos 3x + 2 sin (x/3) has period 6π .

6. Give a different range for sec−1 x than that given in the text.
For which x’s would the value of sec−1 x change? Using the
calculator discussion in exercise 4, give one reason why we
might have chosen the range that we did.

In exercises 1 and 2, convert the given radians measure to
degrees.

1. (a) π

4 (b) π

3 (c) π

6 (d) 4π

3

2. (a) 3π

5 (b) π

7 (c) 2 (d) 3

In exercises 3 and 4, convert the given degrees measure to
radians.

3. (a) 180◦ (b) 270◦ (c) 120◦ (d) 30◦

4. (a) 40◦ (b) 80◦ (c) 450◦ (d) 390◦

In exercises 5–14, find all solutions of the given equation.

5. 2 cos x − 1 = 0 6. 2 sin x + 1 = 0

7.
√

2 cos x − 1 = 0 8. 2 sin x − √
3 = 0
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9. sin2 x − 4 sin x + 3 = 0 10. sin2 x − 2 sin x − 3 = 0

11. sin2 x + cos x − 1 = 0 12. sin 2x − cos x = 0

13. cos2 x + cos x = 0 14. sin2 x − sin x = 0

In exercises 15–24, sketch a graph of the function.

15. f (x) = sin 2x 16. f (x) = cos 3x

17. f (x) = tan 2x 18. f (x) = sec 3x

19. f (x) = 3 cos (x − π/2) 20. f (x) = 4 cos (x + π )

21. f (x) = sin 2x − 2 cos 2x 22. f (x) = cos 3x − sin 3x

23. f (x) = sin x sin 12x 24. f (x) = sin x cos 12x

In exercises 25–32, identify the amplitude, period, and
frequency.

25. f (x) = 3 sin 2x 26. f (x) = 2 cos 3x

27. f (x) = 5 cos 3x 28. f (x) = 3 sin 5x

29. f (x) = 3 cos (2x − π/2) 30. f (x) = 4 sin (3x + π )

31. f (x) = −4 sin x 32. f (x) = −2 cos 3x

In exercises 33–36, prove that the given trigonometric identity
is true.

33. sin (α − β) = sin α cos β − sin β cos α

34. cos (α − β) = cos α cos β + sin α sin β

35. (a) cos (2θ) = 2 cos2 θ − 1
(b) cos (2θ) = 1 − 2 sin2 θ

36. (a) sec2 θ = tan2 θ + 1
(b) csc2 θ = cot2 θ + 1

In exercises 37–46, evaluate the inverse function by sketching a
unit circle and locating the correct angle on the circle.

37. cos−1 0 38. tan−1 0

39. sin−1(−1) 40. cos−1(1)

41. sec−1 1 42. tan−1(−1)

43. sec−1 2 44. csc−1 2

45. cot−1 1 46. tan−1
√

3

47. Prove that, for some constant β,

4 cos x − 3 sin x = 5 cos (x + β).

Then, estimate the value of β.

48. Prove that, for some constant β,

2 sin x + cos x =
√

5 sin (x + β).

Then, estimate the value of β.

In exercises 49–52, determine whether or not the function is pe-
riodic. If it is periodic, find the smallest (fundamental) period.

49. f (x) = cos 2x + 3 sin πx

50. f (x) = sin x − cos
√

2x

51. f (x) = sin 2x − cos 5x

52. f (x) = cos 3x − sin 7x

In exercises 53–56, use the range forθ to determine the indicated
function value.

53. sin θ = 1
3 , 0 ≤ θ ≤ π

2 , find cos θ .

54. cos θ = 4
5 , 0 ≤ θ ≤ π

2 , find sin θ .

55. sin θ = 1
2 , π

2 ≤ θ ≤ π , find cos θ .

56. sin θ = 1
2 , π

2 ≤ θ ≤ π , find tan θ .

In exercises 57–64, use a triangle to simplify each expression.
Where applicable, state the range of x’s for which the simplifica-
tion holds.

57. cos (sin−1 x) 58. cos (tan−1 x)

59. tan (sec−1 x) 60. cot (cos−1 x)

61. sin
(
cos−1 1

2

)
62. cos

(
sin−1 1

2

)
63. tan

(
cos−1 3

5

)
64. csc

(
sin−1 2

3

)
In exercises 65–68, use a graphing calculator or computer to
determine the number of solutions of each equation and nu-
merically estimate the solutions (x is in radians).

65. 2 cos x = 2 − x 66. 3 sin x = x

67. cos x = x2 − 2 68. sin x = x2

69. A person sitting 2 miles from a rocket launch site measures
20◦ up to the current location of the rocket. How high up is the
rocket?

70. A person who is 6 feet tall stands 4 feet from the base of a light
pole and casts a 2-foot-long shadow. How tall is the light pole?

71. A surveyor stands 80 feet from the base of a building and mea-
sures an angle of 50◦ to the top of the steeple on top of the
building. The surveyor figures that the center of the steeple lies
20 feet inside the front of the structure. Find the height of the
steeple.

72. Suppose that the surveyor of exercise 71 estimates that the cen-
ter of the steeple lies between 20′ and 21′ inside the front of the
structure. Determine how much the extra foot would change
the calculation of the height of the building.

73. A picture hanging in an art gallery has a frame 20 inches high
and the bottom of the frame is 6 feet above the floor. A person
who is 6 feet tall stands x feet from the wall. Let A be the angle
formed by the ray from the person’s eye to the bottom of the
frame and the ray from the person’s eye to the top of the frame.
Write A as a function of x and graph y = A(x).
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x

20"

6'

A

74. In golf, the goal is to hit a ball into a hole of diameter 4.5 inches.
Suppose a golfer stands x feet from the hole trying to putt the
ball into the hole. A first approximation of the margin of error
in a putt is to measure the angle A formed by the ray from the
ball to the right edge of the hole and the ray from the ball to
the left edge of the hole. Find A as a function of x .

75. In an AC circuit, the voltage is given by v(t) = vp sin 2π f t ,
where vp is the peak voltage and f is the frequency in Hz. A
voltmeter actually measures an average (called the root-mean-
square) voltage, equal to vp/

√
2. If the voltage has amplitude

170 and period π/30, find the frequency and meter voltage.

76. An old-fashioned LP record player rotated records at 33 1
3 rpm

(revolutions per minute). What is the period (in minutes) of the
rotation? What is the period for a 45 rpm single?

77. Suppose that the ticket sales of an airline (in thousands of
dollars) is given by s(t) = 110 + 2t + 15 sin

(
1
6 π t

)
, where t

is measured in months. What real-world phenomenon might
cause the fluctuation in ticket sales modeled by the sine term?
Based on your answer, what month corresponds to t = 0? Dis-
regarding seasonal fluctuations, by what amount is the airline’s
sales increasing annually?

78. Piano tuners sometimes start by striking a tuning fork and
then the corresponding piano key. If the tuning fork and pi-
ano note each have frequency 8, then the resulting sound is
sin 8t + sin 8t . Graph this. If the piano is slightly out-of-tune
at frequency 8.1, the resulting sound is sin 8t + sin 8.1t . Graph
this and explain how the piano tuner can hear the small differ-
ence in frequency.

79. Give precise definitions of csc−1 x and cot−1 x .

80. In baseball, outfielders are able to easily track down and catch
fly balls that have very long and high trajectories. Physicists
have argued for years about how this is done. A recent explana-
tion involves the following geometry.

The player can catch the ball by running to keep the an-
gle ψ constant (this makes it appear that the ball is moving
in a straight line). Assuming that all triangles shown are right

triangles, show that tan ψ = tan α

tan β
and then solve for ψ .

Outfielder

Ball

Home
plate

c
b

a

EXPLORATORY EXERCISES

1. In his book and video series The Ring of Truth, physicist Philip
Morrison performed an experiment to estimate the circumfer-
ence of the earth. In Nebraska, he measured the angle to a
bright star in the sky, drove 370 miles due south into Kansas,
and measured the new angle to the star. Some geometry shows
that the difference in angles, about 5.02◦ , equals the angle
from the center of the earth to the two locations in Nebraska
and Kansas. If the earth is perfectly spherical (it’s not) and
the circumference of the portion of the circle measured out by
5.02◦ is 370 miles, estimate the circumference of the earth.
This experiment was based on a similar experiment by the an-
cient Greek scientist Eratosthenes. The ancient Greeks and the
Spaniards of Columbus’ day knew that the earth was round;
they just disagreed about the circumference. Columbus argued
for a figure about half of the actual value, since a ship couldn’t
survive on the water long enough to navigate the true distance.

2. An oil tank with circular cross sections lies on its side. A stick
is inserted in a hole at the top and used to measure the depth
d of oil in the tank. Based on this measurement, the goal is to
compute the percentage of oil left in the tank.

d

To simplify calculations, suppose the circle is a unit circle with
center at (0, 0). Sketch radii extending from the origin to the
top of the oil. The area of oil at the bottom equals the area of
the portion of the circle bounded by the radii minus the area of
the triangle formed above.
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d

1 1
u

Start with the triangle, which has area one-half base times
height. Explain why the height is 1 − d. Find a right triangle
in the figure (there are two of them) with hypotenuse 1 (the ra-
dius of the circle) and one vertical side of length 1 − d. The
horizontal side has length equal to one-half the base of the
larger triangle. Show that this equals

√
1 − (1 − d)2. The area

of the portion of the circle equals πθ/2π = θ/2, where θ is the
angle at the top of the triangle. Find this angle as a function of
d . (Hint: Go back to the right triangle used above with upper
angle θ/2.) Then find the area filled with oil and divide by π

to get the portion of the tank filled with oil.

3. Computer graphics can be misleading. This exercise works
best using a “disconnected” graph (individual dots, not con-
nected). Graph y = sin x2 using a graphing window for which
each pixel represents a step of 0.1 in the x- or y-direction.
You should get the impression of a sine wave that oscillates
more and more rapidly as you move to the left and right. Next,
change the graphing window so that the middle of the original
screen (probably x = 0) is at the far left of the new screen.
You will probably see what appears to be a random jumble of
dots. Continue to change the graphing window by increasing
the x-values. Describe the patterns or lack of patterns that you
see. You should find one pattern that looks like two rows of
dots across the top and bottom of the screen; another pattern
looks like the original sine wave. For each pattern that you find,
pick adjacent points with x-coordinates a and b. Then change
the graphing window so that a ≤ x ≤ b and find the portion of
the graph that is missing. Remember that, whether the points
are connected or not, computer graphs always leave out part of
the graph; it is part of your job to know whether the missing
part is important or not.

0.5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Some bacteria reproduce very quickly, as you may have discovered if you have ever had an
infected cut or strep throat. Under the right circumstances, the number of bacteria in certain
cultures will double in as little as an hour (or even less). In this section, we discuss some
functions that can be used to model such rapid growth.

For instance, suppose that initially there are 100 bacteria at a given site, and the pop-
ulation doubles every hour. Call the population function P(t), where t represents time (in
hours) and start the clock running at time t = 0. The initial population of 100 means that
P(0) = 100. After 1 hour, the population will double to 200, so that P(1) = 200. After
another hour, the population will have doubled again to 400, making P(2) = 400. After a
third hour, the population will have doubled again to 800, making P(3) = 800 and so on.

Let’s compute the population after 10 hours. (Try guessing this now. Most people guess
poorly on this type of problem.) You could calculate the population at 4 hours, 5 hours,
and so on, or you could use the following shortcut. To find P(1), you double the initial
population, so that P(1) = 2 · 100. To find P(2), you double the population at time t = 1,
so that P(2) = 2 · 2 · 100 = 22 · 100. Similarly, P(3) = 23 · 100. This pattern leads us to

P(10) = 210 · 100 = 102,400.

Depending on the organism, this is now a population that could cause some trouble!
The pattern just discovered suggests that the population can be modeled by the function

P(t) = 2t · 100.

We call P(t) an exponential function because the variable t is in the exponent. There is a
subtle question here: what is the domain of this function? We have so far used only integer
values of t , but for what other values of t does P(t) make sense? Certainly, rational powers
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make sense, as in P(1/2) = 21/2 · 100, where you recognize that 21/2 = √
2. This says that

the number of bacteria in the culture after a half hour is

P(1/2) = 21/2 · 100 =
√

2 · 100 ≈ 141.

In this context, the function is not intended to give the exact number of bacteria at a given
time, but rather, to predict an approximate number.

In any case, it’s a simple matter to interpret fractional powers as roots. For instance,
x1/2 = √

x, x1/3 = 3
√

x, x1/4 = 4
√

x , and so on. Further, we can write

x2/3 = 3
√

x2 = (
3
√

x
)2

,

x7/4 = 4
√

x7 = (
4
√

x
)7

,

x3.1 = x31/10 = 10
√

x31

and so on. But, what about irrational powers? These are somewhat harder to define, but they
work exactly the way you would want them to. For instance, sinceπ is between 3.14 and 3.15,
2π is between 23.14 and 23.15. In this way, we define 2x for x irrational to fill in the gaps in the
graph of y = 2x for x rational. That is, if x is irrational and a < x < b, for rational numbers
a and b, then 2a < 2x < 2b. This is the logic behind the definition of irrational powers.

If for some reason, you want to find the population after π hours, you can use your
calculator or computer to obtain the approximate population:

P(π ) = 2π · 100 ≈ 882.

For your convenience, we summarize the usual rules of exponents next.

RULES OF EXPONENTS

� For any integers m and n,

xm/n = n
√

xm = (
n
√

x
)m

.

� For any real number p,

x−p = 1

x p
.

� For any real numbers p and q,

(x p)q = x p·q .
� For any real numbers p and q,

x p · xq = x p+q .

Throughout your calculus course, you will need to be able to quickly convert back and forth
between exponential form and fractional or root form.

EXAMPLE 5.1 Converting Expressions to Exponential Form

Convert each to exponential form: (a) 3
√

x5, (b)
5

3
√

x
, (c)

3x2

2
√

x
, and (d) (2x · 23+x )2.

Solution For (a), simply leave the 3 alone and convert the power:

3
√

x5 = 3x5/2.
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For (b), use a negative exponent to write x in the numerator:

5
3
√

x
= 5x−1/3.

For (c), first separate the constants from the variables and then simplify:

3x2

2
√

x
= 3

2

x2

x1/2
= 3

2
x2−1/2 = 3

2
x3/2.

For (d), first work inside the parentheses and then square:

(2x · 23+x )2 = (2x+3+x )2 = (22x+3)2 = 24x+6. �

The function in part (d) of example 5.1 is called an exponential function with a
base of 2.

DEFINITION 5.1

For any positive constant b �= 1, the function f (x) = bx is called an exponential
function. Here, b is called the base and x is the exponent.

Be careful to distinguish between algebraic functions like f (x) = x3 and g(x) = x2/3

and exponential functions. Confusing these types of functions is a very common error.
Notice that for exponential functions like h(x) = 2x , the variable is in the exponent (hence
the name), instead of in the base. Also, notice that the domain of an exponential function is
the entire real line, (−∞, ∞), while the range is the open interval (0, ∞).

While any positive real number can be used as a base for an exponential function,
three bases are the most commonly used in practice. Base 2 arises naturally when analyzing
processes that double at regular intervals (such as the bacteria at the beginning of this
section). Also, most computers perform their calculations using base 2 arithmetic. Our
standard counting system is base 10, so this base is commonly used. However, far and
away the most useful base is the irrational number e. Like π , the number e has a surprising
tendency to occur in important calculations. We define e by the following:

e = lim
n→∞

(
1 + 1

n

)n

. (5.1)

Note that equation (5.1) has at least two serious shortcomings. First, we have not yet said
what the notation lim

n→∞ means. (In fact, we won’t define this until Chapter 1.) Second, it’s

unclear why anyone would ever define a number in such a strange way. We will not be in a
position to answer the second question until Chapter 6 (but the answer is worth the wait).

It suffices for the moment to say that equation (5.1) means that e can be approximated
by calculating values of (1 + 1/n)n for large values of n and that the larger the value of
n, the closer the approximation will be to the actual value of e. In particular, if you look
at the sequence of numbers (1 + 1/2)2, (1 + 1/3)3, (1 + 1/4)4 and so on, they will get
progressively closer and closer to (i.e., home-in on) the irrational number e (named by the
famous mathematician Leonhard Euler).

To get an idea of the value of e, we compute several of these numbers:(
1 + 1

10

)10

= 2.5937 . . . ,
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(
1 + 1

1000

)1000

= 2.7169 . . . ,

(
1 + 1

10,000

)10,000

= 2.7181 . . .

and so on. You can compute enough of these values to convince yourself that the first few
digits of the decimal representation of e (e ≈ 2.718281828459 . . .) are correct.

EXAMPLE 5.2 Computing Values of Exponentials

Approximate e4, e−1/5 and e0.

Solution From a calculator, we find that

e4 = e · e · e · e ≈ 54.598.

From the usual rules of exponents,

e−1/5 = 1

e1/5
= 1

5
√

e
≈ 0.81873.

(On a calculator, it is convenient to replace −1/5 with −0.2.) Finally, e0 = 1. �

The graphs of the exponential functions summarize many of their important properties.

EXAMPLE 5.3 Sketching Graphs of Exponentials

Sketch the graphs of the exponential functions y = 2x , y = ex , y = e2x , y = ex/2,

y = (1/2)x and y = e−x .

Solution Using a calculator or computer, you should get graphs similar to those that
follow.

y

x
42�2�4

10

20

30

FIGURE 0.64a
y = 2x .

Notice that each of the graphs in Figures 0.64a, 0.64b, 0.65a and 0.65b starts very
near the x-axis (reading left to right), passes through the point (0, 1) and then rises steeply.
This is true for all exponentials with base greater than 1 and with a positive coefficient
in the exponent. Note that the larger the base (e > 2) or the larger the coefficient in
the exponent (2 > 1 > 1/2), the more quickly the graph rises to the right (and drops
to the left). Note that the graphs in Figures 0.66a and 0.66b (on the following page) are
the mirror images in the y-axis of Figures 0.64a and 0.64b, respectively. The graphs rise
as you move to the left and drop toward the x-axis as you move to the right. It’s worth
noting that by the rules of exponents, (1/2)x = 2−x and (1/e)x = e−x .

y

x
42�2�4
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FIGURE 0.64b
y = ex .
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FIGURE 0.65a
y = e2x .

FIGURE 0.65b
y = ex/2.
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y

x
42�2�4
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30

y

x
42�2�4
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FIGURE 0.66a
y = (1/2)x .

FIGURE 0.66b
y = e−x .

�

Notice in Figures 0.64–0.66 that each exponential function is one-to-one and hence, has
an inverse function. We define the logarithmic functions to be inverses of the exponential
functions.

DEFINITION 5.2

For any positive number b �= 1, the logarithm function with base b, written logb x , is
defined by

y = logb x if and only if x = by .

That is, the logarithm logb x gives the exponent to which you must raise the base b to
get the given number x . For example,

log10 10 = 1 (since 101 = 10),

log10 100 = 2 (since 102 = 100),

log10 1000 = 3 (since 103 = 1000)

and so on. The value of log10 45 is less clear than the preceding three values, but the idea is
the same: you need to find the number y such that 10y = 45. The answer is between 1 and 2
(why?), but to be more precise, you will need to employ trial and error. (Of course, you can
always use your calculator or computer to compute an approximate value, but that won’t
help you to understand what logarithms are all about.) You should get log10 45 ≈ 1.6532.
Later in the course, we introduce you to a powerful method for accurately approximating
the values of such functions.

Observe from Definition 5.2 that for any base b > 0 (b �= 1), if y = logb x , then x =
by > 0. That is, the domain of f (x) = logb x is the interval (0, ∞). Likewise, the range of
f is the entire real line, (−∞, ∞).

As with exponential functions, the most useful bases turn out to be 2, 10 and e. We
usually abbreviate log10 x by log x . Similarly, loge x is usually abbreviated ln x (for natural
logarithm).

EXAMPLE 5.4 Evaluating Logarithms

Without using your calculator, determine log(1/10), log(0.001), ln e and ln e3.

Solution Since 1/10 = 10−1, log(1/10) = −1. Similarly, since 0.001 = 10−3, we have
that log(0.001) = −3. Since ln e = loge e1, ln e = 1. Similarly, ln e3 = 3. �
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We want to emphasize the inverse relationship defined by Definition 5.2. That is, bx

and logb x are inverse functions for any b > 0.
In particular, for the base e, we have

eln x = x for any x > 0 and ln (ex ) = x for any x . (5.2)

We demonstrate this as follows. Let

y = ln x = loge x .

By Definition 5.2, we have that

x = ey = eln x .

We can use this relationship between natural logarithms and exponentials to solve equations
involving logarithms and exponentials, as in examples 5.5 and 5.6.

EXAMPLE 5.5 Solving a Logarithmic Equation

Solve the equation ln (x + 5) = 3 for x .

Solution Taking the exponential of both sides of the equation and writing things back-
ward (for convenience), we have

e3 = eln (x+5) = x + 5,

from (5.2). Subtracting 5 from both sides gives us

e3 − 5 = x . �

EXAMPLE 5.6 Solving an Exponential Equation

Solve the equation ex+4 = 7 for x .

Solution Taking the natural logarithm of both sides and writing things backward (for
simplicity), we have from (5.2) that

ln 7 = ln (ex+4) = x + 4.

Subtracting 4 from both sides yields

ln 7 − 4 = x . �

y

x
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�3

�2

�1

1

2

FIGURE 0.67a
y = log x .

y

x
1 2 3 4 5

�3

�2

�1

1

2

FIGURE 0.67b
y = ln x .

As always, graphs provide excellent visual summaries of the important properties of a
function.

EXAMPLE 5.7 Sketching Graphs of Logarithms

Sketch graphs of y = log x and y = ln x and briefly discuss the properties of each.

Solution From a calculator or computer, you should obtain graphs resembling those in
Figures 0.67a and 0.67b. Notice that both graphs appear to have a vertical asymptote at
x = 0 (why would that be?), cross the x-axis at x = 1 and very gradually increase as x
increases. Neither graph has any points to the left of the y-axis, since log x and ln x are
defined only for x > 0. The two graphs are very similar, although not identical. �
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The properties just described graphically are summarized in Theorem 5.1.

THEOREM 5.1

For any positive base b �= 1,

(i) logb x is defined only for x > 0,
(ii) logb 1 = 0 and

(iii) if b > 1, then logb x < 0 for 0 < x < 1 and logb x > 0 for x > 1.

PROOF

(i) Note that since b > 0, by > 0 for any y. So, if logb x = y, then x = by > 0.
(ii) Since b0 = 1 for any number b �= 0, logb 1 = 0 (i.e., the exponent to which you raise

the base b to get the number 1 is 0).
(iii) We leave this as an exercise.

All logarithms share a set of defining properties, as stated in Theorem 5.2.

THEOREM 5.2

For any positive base b �= 1 and positive numbers x and y, we have

(i) logb(xy) = logb x + logb y,
(ii) logb(x/y) = logb x − logb y

(iii) logb(x y) = y logb x .

As with most algebraic rules, each of these properties can dramatically simplify calcu-
lations when they apply.

EXAMPLE 5.8 Simplifying Logarithmic Expressions

Write each as a single logarithm: (a) log2 27x − log2 3x and (b) ln 8 − 3 ln (1/2).

Solution First, note that there is more than one order in which to work each problem.
For part (a), we have 27 = 33 and so, 27x = (33)x = 33x . This gives us

log2 27x − log2 3x = log2 33x − log2 3x

= 3x log2 3 − x log2 3 = 2x log2 3 = log2 32x .

For part (b), note that 8 = 23 and 1/2 = 2−1. Then,

ln 8 − 3 ln (1/2) = 3 ln 2 − 3(− ln 2)

= 3 ln 2 + 3 ln 2 = 6 ln 2 = ln 26 = ln 64. �

In some circumstances, it is beneficial to use the rules of logarithms to expand a given
expression, as in the following example.

EXAMPLE 5.9 Expanding a Logarithmic Expression

Use the rules of logarithms to expand the expression ln

(
x3 y4

z5

)
.
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Solution From Theorem 5.2, we have that

ln

(
x3 y4

z5

)
= ln (x3 y4) − ln (z5) = ln (x3) + ln (y4) − ln (z5)

= 3 ln x + 4 ln y − 5 ln z. �

Using the rules of exponents and logarithms, notice that we can rewrite any exponential
as an exponential with base e, as follows. For any base a > 0, we have

ax = eln (ax ) = ex ln a . (5.3)

This follows from Theorem 5.2 (iii) and the fact that eln y = y, for all y > 0.

EXAMPLE 5.10 Rewriting Exponentials as Exponentials with Base e

Rewrite the exponentials 2x , 5x and (2/5)x as exponentials with base e.

Solution From (5.3), we have

2x = eln (2x ) = ex ln 2,

5x = eln (5x ) = ex ln 5

and (
2

5

)x

= eln[(2/5)x ] = ex ln (2/5).
�

Just as we were able to use the relationship between the natural logarithm and exponen-
tials to rewrite an exponential with any positive base in terms of an exponential with base
e, we can use these same properties to rewrite any logarithm in terms of natural logarithms,
as follows. For any positive base b (b �= 1), we will show that

logb x = ln x

ln b
. (5.4)

Let y = logb x . Then by Definition 5.2, we have that x = by . Taking the natural logarithm
of both sides of this equation, we get by Theorem 5.2 (iii) that

ln x = ln (by) = y ln b.

Dividing both sides by ln b (since b �= 1 and ln b �= 0) gives us

y = ln x

ln b
,

establishing (5.4).
One use you will find for equation (5.4) is for computing logarithms with bases other

than e or 10. More than likely, your calculator has keys only for ln x and log x . We illustrate
this idea in example 5.11.

EXAMPLE 5.11 Approximating the Value of Logarithms

Approximate the value of log7 12.

Solution From (5.4), we have

log7 12 = ln 12

ln 7
≈ 1.2769894.

�
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Hyperbolic Functions
There are two special combinations of exponential functions, called the hyperbolic sine and
hyperbolic cosine functions, that have important applications. For instance, the Gateway
Arch in Saint Louis was built in the shape of a hyperbolic cosine graph. (See the photograph
in the margin.) The hyperbolic sine function is denoted by sinh (x) and the hyperbolic cosine
function is denoted by cosh (x). These are defined to be

sinh x = ex − e−x

2
and cosh x = ex + e−x

2
.

Graphs of these functions are shown in Figures 0.68a and 0.68b. The hyperbolic functions
(including the hyperbolic tangent, tanh x , defined in the obvious way) are often convenient to
use when solving equations. For now, we verify several basic properties that the hyperbolic
functions satisfy in parallel with their trigonometric counterparts.

Saint Louis Gateway Arch.

42�2�4

�10

10

�5

5

y

x
42�2�4

�10

10

�5

5

y

x

FIGURE 0.68a
y = sinh x .

FIGURE 0.68b
y = cosh x .

EXAMPLE 5.12 Computing Values of Hyperbolic Functions

Compute f (0), f (1) and f (−1) and determine how f (x) and f (−x) compare for each
function: (a) f (x) = sinh x and (b) f (x) = cosh x .

Solution For part (a), we have sinh 0 = e0 − e−0

2
= 1 − 1

2
= 0. Note that this means

that sinh 0 = sin 0 = 0. Also, we have sinh 1 = e1 − e−1

2
≈ 1.18, while sinh (−1) =

e−1 − e1

2
≈ −1.18. Notice that sinh (−1) = − sinh 1. In fact, for any x ,

sinh (−x) = e−x − ex

2
= −(ex − e−x )

2
= − sinh x .

[Recall that the same rule holds for the corresponding trigonometric function:

sin (−x) = −sin x .] For part (b), we have cosh 0 = e0 + e−0

2
= 1 + 1

2
= 1. Note that

this means that cosh 0 = cos 0 = 1. Also, we have cosh 1 = e1 + e−1

2
= ≈ 1.54, while

cosh (−1) = e−1 + e1

2
≈ 1.54. Notice that cosh (−1) = cosh 1. In fact, for any x ,

cosh (−x) = e−x + ex

2
= ex + e−x

2
= cosh x .
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[Again, the same rule holds for the corresponding trigonometric function: cos (−x) =
cos x .] �

Fitting a Curve to Data
You are familiar with the idea that two points determine a straight line. As we see in
example 5.13, two points will also determine an exponential function.

EXAMPLE 5.13 Matching Data to an Exponential Curve

Find the exponential function of the form f (x) = aebx that passes through the points
(0, 5) and (3, 9).

Solution Notice that you can’t simply solve this problem by inspection. That is, you
can’t just read off appropriate values for a and b. Instead, we solve for a and b, using the
properties of logarithms and exponentials. First, for the graph to pass through the point
(0, 5), this means that

5 = f (0) = aeb · 0 = a,

so that a = 5. Next, for the graph to pass through the point (3, 9), we must have

9 = f (3) = ae3b = 5e3b.

To solve for the b in the exponent, we divide both sides of the last equation by 5 and
take the natural logarithm of both sides, which yields

ln

(
9

5

)
= ln e3b = 3b ln e = 3b,

since ln e = 1. Finally, dividing by 3 gives us the value for b:

b = 1

3
ln

(
9

5

)
.

Thus, f (x) = 5e(1/3) ln (9/5)x . �2 31 6 84 75
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FIGURE 0.69a
U.S. Population 1790–1860.

Consider the population of the United States from 1790 to 1860, found in the ac-
companying table. A plot of these data points can be seen in Figure 0.69a (where the
vertical scale represents the population in millions). This shows that the population was
increasing, with larger and larger increases each decade. If you sketch an imaginary curve
through these points, you will probably get the impression of a parabola or perhaps the
right half of a cubic or exponential. And that’s the question: is this data best modeled by a
quadratic function, a cubic function, a fourth-order polynomial, an exponential function or
what?

Year U.S. Population

1790 3,929,214

1800 5,308,483

1810 7,239,881

1820 9,638,453

1830 12,866,020

1840 17,069,453

1850 23,191,876

1860 31,443,321

We can use the properties of logarithms from Theorem 5.2 to help determine whether a
given set of data is modeled better by a polynomial or an exponential function, as follows.
Suppose that the data actually comes from an exponential, say y = aebx (i.e., the data points
lie on the graph of this exponential). Then,

ln y = ln (aebx ) = ln a + ln ebx = ln a + bx .

If you draw a new graph, where the horizontal axis shows values of x and the vertical
axis corresponds to values of ln y, then the graph will be the line ln y = bx + c (where the
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constant c = ln a). On the other hand, suppose the data actually came from a polynomial.
If y = bxn (for any n), then observe that

ln y = ln (bxn) = ln b + ln xn = ln b + n ln x .

In this case, a graph with horizontal and vertical axes corresponding to x and ln y, respec-
tively, will look like the graph of a logarithm, ln y = n ln x + c. Such a semi-log graph
(i.e., graphing ln y versus x) lets us distinguish the graph of an exponential from that of a
polynomial: graphs of exponentials become straight lines, while graphs of polynomials (of
degree ≥ 1) become logarithmic curves. Scientists and engineers frequently use semi-log
graphs to help them gain an understanding of physical phenomena represented by some
collection of data.

EXAMPLE 5.14 Using a Semi-Log Graph to Identify a Type
of Function

Determine if the population of the United States from 1790 to 1860 was increasing
exponentially or as a polynomial.

21 4 63 5 7 8

1

2

3

4

Number of decades
since 1780

N
at

ur
al

 lo
ga

ri
th

m
 o

f
U

.S
. p

op
ul

at
io

n 
(m

ill
io

ns
)

FIGURE 0.69b
Semi-log plot of U.S. population.

Solution As already indicated, the trick is to draw a semi-log graph. That is, instead
of plotting (1, 3.9) as the first data point, plot (1, ln 3.9) and so on. A semi-log plot
of this data set is seen in Figure 0.69b. Although the points are not exactly colinear
(how would you prove this?), the plot is very close to a straight line with ln y-intercept
of 1 and slope 0.35. You should conclude that the population is well-modeled by an
exponential function. (Keep in mind that here, as with most real problems, the data
is somewhat imprecise and so, the points in the semi-log plot need not be perfectly
colinear for you to conclude that the data is modeled quite well by an exponential.) The
exponential model would be y = P(t) = aebt , where t represents the number of decades
since 1780. Here, b is the slope and ln a is the ln y-intercept of the line in the semi-
log graph. That is, b = 0.35 and ln a = 1 (why?), so that a = e. The population is then
modeled by

P(t) = e · e0.35t million. �

EXERCISES 0.5

WRITING EXERCISES

1. Starting from a single cell, a human being is formed by 50 gen-
erations of cell division. Explain why after n divisions there
are 2n cells. Guess how many cells will be present after 50
divisions, then compute 250. Briefly discuss how rapidly expo-
nential functions increase.

2. Explain why the graphs of f (x) = 2−x and g(x) = (
1
2

)x
are

the same.

3. Compare f (x) = x2 and g(x) = 2x for x = 1
2 , x = 1,

x = 2, x = 3 and x = 4. In general, which function is bigger
for large values of x? For small values of x?

4. Compare f (x) = 2x and g(x) = 3x for x = −2, x = − 1
2 ,

x = 1
2 and x = 2. In general, which function is bigger for neg-

ative values of x? For positive values of x?

In exercises 1–6, convert each exponential expression into frac-
tional or root form.

1. 2−3 2. 4−2 3. 31/2

4. 62/5 5. 52/3 6. 4−2/3

In exercises 7–12, convert each expression into exponential form.

7.
1

x2
8.

3
√

x2 9.
2

x3

10.
4

x2
11.

1

2
√

x
12.

3

2
√

x3
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In exercises 13–16, find the integer value of the given expression
without using a calculator.

13. 43/2 14. 82/3 15.

√
8

21/2
16.

2

(1/3)2

In exercises 17–20, use a calculator or computer to estimate each
value.

17. 2e−1/2 18. 4e−2/3 19.
12

e
20.

14√
e

In exercises 21–30, sketch a graph of the given function.

21. f (x) = e2x 22. f (x) = e3x

23. f (x) = 2ex/4 24. f (x) = e−x2

25. f (x) = 3e−2x 26. f (x) = 10e−x/3

27. f (x) = ln 2x 28. f (x) = ln x2

29. f (x) = e2 ln x 30. f (x) = e−x/4 sin x

In exercises 31–40, solve the given equation for x.

31. e2x = 2 32. e4x = 3

33. ex (x2 − 1) = 0 34. xe−2x + 2e−2x = 0

35. ln 2x = 4 36. 2 ln 3x = 1

37. 4 ln x = −8 38. x2 ln x − 9 ln x = 0

39. e2 ln x = 4 40. ln (e2x ) = 6

In exercises 41 and 42, use the definition of logarithm to deter-
mine the value.

41. (a) log3 9 (b) log4 64 (c) log3
1
27

42. (a) log4
1
16 (b) log4 2 (c) log9 3

In exercises 43 and 44, use equation (5.4) to approximate the
value.

43. (a) log3 7 (b) log4 60 (c) log3
1
24

44. (a) log4
1
10 (b) log4 3 (c) log9 8

In exercises 45–50, rewrite the expression as a single logarithm.

45. ln 3 − ln 4 46. 2 ln 4 − ln 3

47. 1
2 ln 4 − ln 2 48. 3 ln 2 − ln 1

2

49. ln 3
4 + 4 ln 2 50. ln 9 − 2 ln 3

In exercises 51–54, find a function of the form f (x) � aebx with
the given function values.

51. f (0) = 2, f (2) = 6 52. f (0) = 3, f (3) = 4

53. f (0) = 4, f (2) = 2 54. f (0) = 5, f (1) = 2

55. A fast-food restaurant gives every customer a game ticket. With
each ticket, the customer has a 1-in-10 chance of winning a free
meal. If you go 10 times, estimate your chances of winning at
least one free meal. The exact probability is 1 − (

9
10

)10
. Com-

pute this number and compare it to your guess.

56. In exercise 55, if you had 20 tickets with a 1-in-20 chance of
winning, would you expect your probability of winning to in-
crease or decrease? Compute the probability 1 − (

19
20

)20
to find

out.

57. In general, if you have n chances of winning with a 1-in-n
chance on each try, the probability of winning at least once is
1 − (

1 − 1
n

)n
. As n gets larger, what number does this prob-

ability approach? (Hint: There is a very good reason that this
question is in this section!)

58. If y = a · xm , show that ln y = ln a + m ln x . If v = ln y, u =
ln x and b = ln a, show that v = mu + b. Explain why the
graph of v as a function of u would be a straight line. This
graph is called the log-log plot of y and x .

59. For the given data, compute v = ln y and u = ln x and plot
points (u, v). Find constants m and b such that v = mu + b
and use the results of exercise 58 to find a constant a such that
y = a · xm .

x 2.2 2.4 2.6 2.8 3.0 3.2
y 14.52 17.28 20.28 23.52 27.0 30.72

60. Repeat exercise 59 for the given data.

x 2.8 3.0 3.2 3.4 3.6 3.8
y 9.37 10.39 11.45 12.54 13.66 14.81

61. Construct a log-log plot (see exercise 58) of the U.S. popula-
tion data in example 5.14. Compared to the semi-log plot of the
data in Figure 0.69b, does the log-log plot look linear? Based
on this, is the population data modeled better by an exponential
function or a polynomial (power) function?

62. Construct a semi-log plot of the data in exercise 59. Compared
to the log-log plot already constructed, does this plot look lin-
ear? Based on this, is this data better modeled by an exponential
or power function?

63. The concentration [H+] of free hydrogen ions in a chemical
solution determines the solution’s pH, as defined by pH =
− log [H+]. Find [H+] if the pH equals (a) 7, (b) 8, and (c) 9.
For each increase in pH of 1, by what factor does [H+] change?

64. Gastric juice is considered an acid, with a pH of about 2.5.
Blood is considered alkaline, with a pH of about 7.5. Compare
the concentrations of hydrogen ions in the two substances (see
exercise 63).

65. The Richter magnitude M of an earthquake is defined in terms
of the energy E in joules released by the earthquake, with
log10 E = 4.4 + 1.5M . Find the energy for earthquakes with
magnitudes (a) 4, (b) 5 and (c) 6. For each increase in M of
one, by what factor does E change?

66. It puzzles some people who have not grown up around earth-
quakes that a magnitude 6 quake is considered much more se-
vere than a magnitude 3 quake. Compare the amount of energy
released in the two quakes.
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67. The decibel level of a noise is defined in terms of the intensity I
of the noise, with dB = 10 log10(I/I0). Here, I0 = 10−12 W/m2

is the intensity of a barely audible sound. Compute the inten-
sity levels of sounds with (a) dB = 80, (b) dB = 90 and (c)
dB = 100. For each increase in decibels of 10, by what factor
does I change?

68. At a basketball game, a courtside decibel meter shows crowd
noises ranging from 60 dB to 110 dB. How much louder is the
110-dB noise compared to the 60-dB noise (see exercise 67)?

69. Use a graphing calculator to graph y = xe−x , y = xe−2x , y =
xe−3x and so on. Estimate the locations of the maximum for
each. In general, state a rule for the location of the maximum
of y = xe−kx .

70. In golf, the task is to hit a golf ball into a small hole. If the
ground near the hole is not flat, the golfer must judge how
much the ball will curve. Suppose the golfer is at the point
(−13, 0), the hole is at the point (0, 0) and the path of the ball
is, for −13 ≤ x ≤ 0, y = −1.672x + 72 ln (1 + 0.02x). Show
that the ball goes in the hole and estimate the point on the y-axis
at which the golfer aimed.

Exercises 71–76 refer to the hyperbolic functions.

71. Show that the range of the hyperbolic cosine is cosh x ≥ 1 and
the range of the hyperbolic sine is the entire real line.

72. Show that cosh2 x − sinh2 x = 1 for all x .

73. The Saint Louis Gateway Arch is both 630 feet wide and
630 feet tall. (Most people think that it looks taller than
it is wide.) One model for the outline of the arch is y =
757.7 − 127.7 cosh

(
x

127.7

)
for y ≥ 0. Use a graphing calcula-

tor to approximate the x- and y-intercepts and determine if the
model has the correct horizontal and vertical measurements.

74. To model the outline of the arch with a parabola, you can start
with y = −c(x + 315)(x − 315) for some constant c. Explain
why this gives the correct x-intercepts. Determine the constant
c that gives a y-intercept of 630. Graph this parabola and the
hyperbolic cosine in exercise 73 on the same axes. Are the
graphs nearly identical or very different?

75. Find all solutions of sinh (x2 − 1) = 0.

76. Find all solutions of cosh (3x + 2) = 0.

77. On a standard piano, the A below middle C produces a sound
wave with frequency 220 Hz (cycles per second). The fre-
quency of the A one octave higher is 440 Hz. In general, dou-
bling the frequency produces the same note an octave higher.
Find an exponential formula for the frequency f as a function
of the number of octaves x above the A below middle C.

78. There are 12 notes in an octave on a standard piano. Middle C
is 3 notes above A (see exercise 77). If the notes are tuned
equally, this means that middle C is a quarter-octave above A.
Use x = 1

4 in your formula from exercise 77 to estimate the
frequency of middle C.

EXPLORATORY EXERCISES

1. Graph y = x2 and y = 2x and approximate the two positive
solutions of the equation x2 = 2x . Graph y = x3 and y = 3x

and approximate the two positive solutions of the equation
x3 = 3x . Explain why x = a will always be a solution of
xa = ax , a > 0. What is different about the role of x = 2 as a
solution of x2 = 2x compared to the role of x = 3 as a solution
of x3 = 3x ? To determine the a-value at which the change
occurs, graphically solve xa = ax for a = 2.1, 2.2, . . . , 2.9
and note that a = 2.7 and a = 2.8 behave differently. Con-
tinue to narrow down the interval of change by testing
a = 2.71, 2.72, . . . , 2.79. Then guess the exact value of a.

2. Graph y = ln x and describe the behavior near x = 0. Then
graph y = x ln x and describe the behavior near x = 0. Re-
peat this for y = x2 ln x, y = x1/2 ln x , and y = xa ln x for a
variety of positive constants a. Because the function “blows
up” at x = 0, we say that y = ln x has a singularity at x = 0.
The order of the singularity at x = 0 of a function f (x) is
the smallest value of a such that y = xa f (x) doesn’t have a
singularity at x = 0. Determine the order of the singularity at
x = 0 for (a) f (x) = 1

x , (b) f (x) = 1

x2
, and (c) f (x) = 1

x3
. The

higher the order of the singularity, the “worse” the singularity
is. Based on your work, how bad is the singularity of y = ln x
at x = 0?

0.6 TRANSFORMATIONS OF FUNCTIONS

You are now familiar with a long list of functions including polynomials, rational functions,
trigonometric functions, exponentials and logarithms. Many students at this stage expect that
calculus and higher-level mathematics courses will consist of defining even more functions
and solving more equations. Actually, one important goal for this course is to more fully
understand the properties of the functions we have already defined. To a large extent, you
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will build your understanding by examining a few key properties of functions. To briefly
get an idea of where we are headed, recall what the function f (x) = x2 represents. To
understand this function, you first had to understand how to multiply two numbers together.
From practice multiplying “3 times 3” and “6 times 6” and so on, the idea of multiplying any
number by itself became natural. The function x2 is, in this sense, simply an abstraction. We
have put multiplication into the broader context of functions. Now that we have functions,
we need to make the manipulations of functions as natural as possible.

The first few function manipulations we define are straightforward.

DEFINITION 6.1

Suppose that f (x) and g(x) are functions with domains D1 and D2, respectively. The
functions f + g, f − g and f · g are defined by

( f + g)(x) = f (x) + g(x),

( f − g)(x) = f (x) − g(x),

and

( f · g)(x) = f (x) · g(x),

for all x in D1 ∩ D2 (i.e., x ∈ D1, and x ∈ D2). The function
f

g
is defined by

(
f

g

)
(x) = f (x)

g(x)
,

for all x in D1 ∩ D2 such that g(x) �= 0.

In example 6.1, we examine various combinations of several simple functions.

EXAMPLE 6.1 Combinations of Functions

If f (x) = x − 3 and g(x) = √
x − 1, determine the functions f + g, 3 f − g and

f

g
,

stating the domains of each.

Solution First, note that the domain of f is the entire real line and the domain of g is
the set of all x ≥ 1. Now,

( f + g)(x) = x − 3 + √
x − 1

and

(3 f − g)(x) = 3(x − 3) − √
x − 1 = 3x − 9 − √

x − 1.

Notice that the domain of both ( f + g) and (3 f − g) is {x |x ≥ 1}. For(
f

g

)
(x) = f (x)

g(x)
= x − 3√

x − 1
,

the domain is {x |x > 1}, where we have added the restriction x �= 1 to avoid dividing
by 0. �
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Definition 6.1 and example 6.1 show us how to do arithmetic with functions. An
operation on functions that does not directly correspond to arithmetic is the composition of
two functions.

g(x)

f (g(x))

gx

f

( f ◦g)(x) = f (g(x)).

DEFINITION 6.2

The composition of functions f (x) and g(x), written f ◦g, is defined by

( f ◦g)(x) = f (g(x)),

for all x such that x is in the domain of g and g(x) is in the domain of f .

The composition of two functions is a two-step process, as indicated in the margin
schematic. Be careful to notice what this definition is saying. In particular, for f (g(x)) to
be defined, you first need g(x) to be defined, so x must be in the domain of g. Next, f must
be defined at the point g(x), so that the number g(x) will need to be in the domain of f .

EXAMPLE 6.2 Finding the Composition of Two Functions

For f (x) = x2 + 1 and g(x) = √
x − 2, find the compositions f ◦g and g◦ f and identify

the domain of each.

Solution First, we have

( f ◦g)(x) = f (g(x)) = f (
√

x − 2)

= (
√

x − 2)2 + 1 = x − 2 + 1 = x − 1.

It’s tempting to write that the domain of f ◦g is the entire real line, but look more carefully.
Note that for x to be in the domain of g, we must have x ≥ 2. The domain of f is the
whole real line, so this places no further restrictions on the domain of f ◦g. Even though
the final expression x − 1 is defined for all x , the domain of ( f ◦g) is {x |x ≥ 2}. For the
second composition,

(g◦ f )(x) = g( f (x)) = g(x2 + 1)

=
√

(x2 + 1) − 2 =
√

x2 − 1.

The resulting square root requires x2 − 1 ≥ 0 or |x | ≥ 1. Since the “inside” function f
is defined for all x , the domain of g◦ f is {x ∈ R

∣∣|x | ≥ 1}, which we write in interval
notation as (−∞, −1] ∪ [1, ∞). �

As you progress through the calculus, you will often find yourself needing to recognize
that a given function is a composition of simpler functions. For now, it is an important skill
to practice.

EXAMPLE 6.3 Identifying Compositions of Functions

Identify functions f and g such that the given function can be written as ( f ◦g)(x) for
each of (a)

√
x2 + 1, (b) (

√
x + 1)2, (c) sin x2 and (d) cos2 x . Note that more than one

answer is possible for each function.

Solution (a) Notice that x2 + 1 is inside the square root. So, one choice is to have
g(x) = x2 + 1 and f (x) = √

x .
(b) Here,

√
x + 1 is inside the square. So, one choice is g(x) = √

x + 1 and f (x) = x2.
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(c) The function can be rewritten as sin (x2), with x2 clearly inside the sine function.
Then, g(x) = x2 and f (x) = sin x is one choice.

(d) The function as written is shorthand for (cos x)2. So, one choice is g(x) = cos x
and f (x) = x2. �
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FIGURE 0.70a
y = x2.

y

x

2

4
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2 4�2�4

FIGURE 0.70b
y = x2 + 3.

In general, it is quite difficult to take the graphs of f (x) and g(x) and produce the graph
of f (g(x)). If one of the functions f and g is linear, however, there is a simple graphical
procedure for graphing the composition. Such linear transformations are explored in the
remainder of this section.

The first case is to take the graph of f (x) and produce the graph of f (x) + c for some
constant c. You should be able to deduce the general result from the following example.

EXAMPLE 6.4 Vertical Translation of a Graph

Graph y = x2 and y = x2 + 3; compare and contrast the graphs.

Solution You can probably sketch these by hand. You should get something like those
in Figures 0.70a and 0.70b. Both figures show parabolas opening up. The main obvious
difference is that x2 has a y-intercept of 0 and x2 + 3 has a y-intercept of 3. Some thought
should convince you that this is an important clue. For any given value of x , the point
on the graph of y = x2 + 3 will be plotted exactly 3 units higher than the corresponding
point on the graph of y = x2. This is shown in Figure 0.71a.

In Figure 0.71b, the two graphs are shown on the same set of axes. To many people, it
does not look like the top graph is the same as the bottom graph moved up 3 units. This is
an unfortunate optical illusion. Humans usually mentally judge distance between curves
as the shortest distance between the curves. For these parabolas, the shortest distance is
vertical at x = 0 but becomes increasingly horizontal as you move away from the y-axis.
The distance of 3 between the parabolas is measured vertically.

x
42�2�4

5

10

15

20

25
Move graph
up 3 units

y

x
42�2�4

5

10

15

20

25

y

FIGURE 0.71a
Translate graph up.

FIGURE 0.71b
y = x2 and y = x2 + 3.

�

In general, the graph of y = f (x) + c is exactly the same as the graph of y = f (x)
shifted up (if c > 0) or down (if c < 0) by |c| units. We usually refer to f (x) + c as a
vertical translation (up or down, by |c| units).
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In example 6.5, we explore what happens if a constant is added to x .

EXAMPLE 6.5 A Horizontal Translation

Compare and contrast the graphs of y = x2 and y = (x − 1)2.

Solution The graphs are shown in Figures 0.72a and 0.72b, respectively.
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FIGURE 0.72a
y = x2.

FIGURE 0.72b
y = (x − 1)2.

x
42�4 �2
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y Move graph to
the right one unit

FIGURE 0.73
Translation to the right.

Notice that the graph of y = (x − 1)2 appears to be the same as the graph of y = x2,
except that it is shifted 1 unit to the right. This should make sense for the following reason.
Pick a value of x , say x = 13. The value of (x − 1)2 at x = 13 is 122, the same as the
value of x2 at x = 12, 1 unit to the left. Observe that this same pattern would hold for any
x you choose. A simultaneous plot of the two functions (see Figure 0.73) shows this. �

In general, for c > 0, the graph of y = f (x − c) is the same as the graph of y = f (x)
shifted c units to the right. Likewise (again, for c > 0), you get the graph of f (x + c)
by moving the graph of y = f (x) to the left c units. We usually refer to f (x − c) and
f (x + c) as horizontal translations (to the right and left, respectively, by c units).

y

x
2 3�3 �1

�15

�10

�5

5

10

15

FIGURE 0.74a
y = f (x).

To avoid confusion on which way to translate the graph of y = f (x), focus on what
makes the argument (the quantity inside the parentheses) zero. For f (x), this is x = 0, but
for f (x − c) you must have x = c to get f (0) [i.e., the same y-value as f (x) when x = 0].
This says that the point on the graph of y = f (x) at x = 0 corresponds to the point on the
graph of y = f (x − c) at x = c.

EXAMPLE 6.6 Comparing Vertical and Horizontal Translations

Given the graph of y = f (x) shown in Figure 0.74a, sketch the graphs of y = f (x) − 2
and y = f (x − 2).

Solution To graph y = f (x) − 2, simply translate the original graph down 2 units, as
shown in Figure 0.74b. To graph y = f (x − 2), simply translate the original graph to
the right 2 units (so that the x-intercept at x = 0 in the original graph corresponds to an
x-intercept at x = 2 in the translated graph), as seen in Figure 0.74c.
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FIGURE 0.74b
y = f (x) − 2.

FIGURE 0.74c
y = f (x − 2).

�

Example 6.7 explores the effect of multiplying or dividing x or y by a constant.

EXAMPLE 6.7 Comparing Some Related Graphs

Compare and contrast the graphs of y = x2 − 1, y = 4(x2 − 1) and y = (4x)2 − 1.

Solution The first two graphs are shown in Figures 0.75a and 0.75b, respectively.
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FIGURE 0.75a
y = x2 − 1.
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FIGURE 0.75b
y = 4(x2 − 1).
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FIGURE 0.75c
y = x2 − 1 and y = 4(x2 − 1).

FIGURE 0.75d
y = (4x)2 − 1.

These graphs look identical until you compare the scales on the y-axes. The values in
Figure 0.75b are four times as large, resulting from the multiplication of the original
function by 4. The effect looks different when the functions are plotted on the same
scale, as in Figure 0.75c. Here, the parabola y = 4(x2 − 1) looks thinner. Note that the
x-intercepts remain the same but the y-intercepts are different. (Why would that be?)
The graph of y = (4x)2 − 1 is shown in Figure 0.75d.
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y � x2 � 1

y � (4x)2 � 1

FIGURE 0.75e
y = x2 − 1 and y = (4x)2 − 1.

Can you spot the difference here? In this case, the x-scale has now changed, by
the same factor of 4 as in the function. To see this, note that substituting x = 1/4 into
(4x)2 − 1 produces (1)2 − 1, exactly the same as substituting x = 1 into the original
function. When plotted on the same set of axes (as in Figure 0.75e), the parabola y =
(4x)2 − 1 looks thinner. Note that here, the x-intercepts are different, but the y-intercepts
are the same. (Why would that be?) �

We can generalize the observations made in example 6.7. Before reading our explana-
tion, try to state a general rule for yourself. How are the graphs of the functions c f (x) and
f (cx) related to the graph of y = f (x)?
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Based on example 6.7, notice that to obtain a graph of y = c f (x) for some constant
c > 0, you can take the graph of y = f (x) and multiply the scale on the y-axis by c. To
obtain a graph of y = f (cx) for some constant c > 0, you can take the graph of y = f (x)
and multiply the scale on the x-axis by 1/c.

These basic rules can be combined to understand more complicated graphs.
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FIGURE 0.76a
y = x2.
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FIGURE 0.76b
y = 2x2 − 3.

EXAMPLE 6.8 A Translation and a Stretching

Describe how to get the graph of y = 2x2 − 3 from the graph of y = x2.

Solution You can get from x2 to 2x2 − 3 by multiplying by 2 and then subtracting 3.
In terms of the graph, this has the effect of multiplying the y-scale by 2 and then shifting
the graph down by 3 units (see the graphs in Figures 0.76a and 0.76b). �

EXAMPLE 6.9 A Translation Involving Both x and y Scales

Describe how to get the graph of y = x2 + 4x + 3 from the graph of y = x2.

Solution We can again relate this (and the graph of every quadratic) to the graph of
y = x2. We must first complete the square. Recall that in this process, you take the
coefficient of x(4), divide by 2(4/2 = 2) and square the result (22 = 4). Add and subtract
this number and then, rewrite the x terms as a perfect square. We have

y = x2 + 4x + 3 = (x2 + 4x + 4) − 4 + 3 = (x + 2)2 − 1.

To graph this function, take the parabola y = x2 (see Figure 0.77a) and translate the
graph 2 units to the left and 1 unit down (see Figure 0.77b).
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FIGURE 0.77a
y = x2.

FIGURE 0.77b
y = (x + 2)2 − 1.

�

The following table summarizes our discoveries in this section.

Transformations of f (x)

Transformation Form Effect on Graph

Vertical translation f (x) + c |c| units up (c > 0) or down (c < 0)

Horizontal translation f (x + c) |c| units left (c > 0) or right (c < 0)

Vertical scale c f (x)(c > 0) multiply vertical scale by c

Horizontal scale f (cx)(c > 0) divide horizontal scale by c

You will explore additional transformations in the exercises.
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EXERCISES 0.6

WRITING EXERCISES

1. The restricted domain of example 6.2 may be puzzling. Con-
sider the following analogy. Suppose you have an airplane
flight from New York to Los Angeles with a stop for refueling
in Minneapolis. If bad weather has closed the airport in Min-
neapolis, explain why your flight will be canceled (or at least
rerouted) even if the weather is great in New York and Los
Angeles.

2. Explain why the graphs of y = 4(x2 − 1) and y = (4x)2 − 1
in Figures 0.75c and 0.75e appear “thinner” than the graph of
y = x2 − 1.

3. As illustrated in example 6.9, completing the square can be
used to rewrite any quadratic function in the form a(x − d)2 +
e. Using the transformation rules in this section, explain why
this means that all parabolas (with a > 0) will look essentially
the same.

4. Explain why the graph of y = f (x + 4) is obtained by moving
the graph of y = f (x) four units to the left, instead of to the
right.

In exercises 1–6, find the compositions f ◦ g and g ◦ f and iden-
tify their respective domains.

1. f (x) = x + 1, g(x) = √
x − 3

2. f (x) = x − 2, g(x) = √
x + 1

3. f (x) = ex , g(x) = ln x

4. f (x) = √
1 − x, g(x) = ln x

5. f (x) = x2 + 1, g(x) = sin x

6. f (x) = 1

x2 − 1
, g(x) = x2 − 2

In exercises 7–16, identify functions f(x) and g(x) such that the
given function equals ( f ◦g)(x).

7.
√

x4 + 1 8. 3
√

x + 3

9.
1

x2 + 1
10.

1

x2
+ 1

11. (4x + 1)2 + 3 12. 4(x + 1)2 + 3

13. sin3 x 14. sin x3

15. ex2+1 16. e4x−2

In exercises 17–22, identify functions f (x), g(x) and h(x) such
that the given function equals [ f ◦(g◦h)] (x).

17.
3√

sin x + 2
18.

√
e4x + 1

19. cos3(4x − 2) 20. ln
√

x2 + 1

21. 4ex2 − 5 22.
[
tan−1(3x + 1)

]2

In exercises 23–30, use the graph of y � f (x) given in the figure
to graph the indicated function.

23. f (x) − 3 24. f (x + 2) 25. f (x − 3)

26. f (x) + 2 27. f (2x) 28. 3 f (x)

29. 4 f (x) − 1 30. 3 f (x + 2)

x
2 4�2�4

2

�2

4

6

8

10

y

In exercises 31–38, use the graph of y � f (x) given in the figure
to graph the indicated function.

31. f (x − 4) 32. f (x + 3) 33. f (2x)

34. f (2x − 4) 35. f (3x + 3) 36. 3 f (x)

37. 2 f (x) − 4 38. 3 f (x) + 3

y

x
2 4�2�4

�10

�5

5

10

In exercises 39–44, complete the square and explain how to
transform the graph of y � x2 into the graph of the given
function.

39. f (x) = x2 + 2x + 1 40. f (x) = x2 − 4x + 4

41. f (x) = x2 + 2x + 4 42. f (x) = x2 − 4x + 2

43. f (x) = 2x2 + 4x + 4 44. f (x) = 3x2 − 6x + 2
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In exercises 45–48, graph the given function and compare to the
graph of y � x2 − 1.

45. f (x) = −2(x2 − 1) 46. f (x) = −3(x2 − 1)

47. f (x) = −3(x2 − 1) + 2 48. f (x) = −2(x2 − 1) − 1

In exercises 49–52, graph the given function and compare to the
graph of y � (x − 1)2 − 1 � x2 − 2x.

49. f (x) = (−x)2 − 2(−x)

50. f (x) = (−2x)2 − 2(−2x)

51. f (x) = (−x)2 − 2(−x) + 1

52. f (x) = (−3x)2 − 2(−3x) − 3

53. Based on exercises 45–48, state a rule for transforming the
graph of y = f (x) into the graph of y = c f (x) for c < 0.

54. Based on exercises 49–52, state a rule for transforming the
graph of y = f (x) into the graph of y = f (cx) for c < 0.

55. Sketch the graph of y = |x |3. Explain why the graph of
y = |x |3 is identical to that of y = x3 to the right of the y-
axis. For y = |x |3, describe how the graph to the left of the
y-axis compares to the graph to the right of the y-axis. In gen-
eral, describe how to draw the graph of y = f (|x |) given the
graph of y = f (x).

56. For y = x3, describe how the graph to the left of the y-axis
compares to the graph to the right of the y-axis. Show that
for f (x) = x3, we have f (−x) = − f (x). In general, if you
have the graph of y = f (x) to the right of the y-axis and
f (−x) = − f (x) for all x , describe how to graph y = f (x)
to the left of the y-axis.

57. Iterations of functions are important in a variety of ap-
plications. To iterate f (x), start with an initial value x0

and compute x1 = f (x0), x2 = f (x1), x3 = f (x2) and so
on. For example, with f (x) = cos x and x0 = 1, the iter-
ates are x1 = cos 1 ≈ 0.54, x2 = cos x1 ≈ cos 0.54 ≈ 0.86,
x3 ≈ cos 0.86 ≈ 0.65 and so on. Keep computing iterates and
show that they get closer and closer to 0.739085. Then pick
your own x0 (any number you like) and show that the iterates
with this new x0 also converge to 0.739085.

58. Referring to exercise 57, show that the iterates of a function can
be written as x1 = f (x0), x2 = f ( f (x0)), x3 = f ( f ( f (x0)))
and so on. Graph y = cos (cos x), y = cos (cos (cos x)) and
y = cos (cos (cos (cos x))). The graphs should look more and
more like a horizontal line. Use the result of exercise 57 to
identify the limiting line.

59. Compute several iterates of f (x) = sin x(see exercise 57) with
a variety of starting values. What happens to the iterates in the
long run?

60. Repeat exercise 59 for f (x) = x2.

61. In cases where the iterates of a function (see exercise 57)
repeat a single number, that number is called a fixed point.
Explain why any fixed point must be a solution of the equa-
tion f (x) = x . Find all fixed points of f (x) = cos x by solv-
ing the equation cos x = x . Compare your results to that of
exercise 57.

62. Find all fixed points of f (x) = sin x (see exercise 61). Com-
pare your results to those of exercise 59.

EXPLORATORY EXERCISES

1. You have explored how completing the square can transform
any quadratic function into the form y = a(x − d)2 + e. We
concluded that all parabolas with a > 0 look alike. To see that
the same statement is not true of cubic polynomials, graph y =
x3 and y = x3 − 3x . In this exercise, you will use completing
the cube to determine how many different cubic graphs there
are. To see what “completing the cube” would look like, first
show that (x + a)3 = x3 + 3ax2 + 3a2x + a3. Use this result
to transform the graph of y = x3 into the graphs of (a) y = x3 −
3x2 + 3x − 1 and (b) y = x3 − 3x2 + 3x + 2. Show that you
can’t get a simple transformation to y = x3 − 3x2 + 4x − 2.
However, show that y = x3 − 3x2 + 4x − 2 can be obtained
from y = x3 + x by basic transformations. Show that the fol-
lowing statement is true: any cubic (y = ax3 + bx2 + cx + d)
can be obtained with basic transformations from y = ax3 + kx
for some constant k.

2. In many applications, it is important to take a section of a graph
(e.g., some data) and extend it for predictions or other analysis.
For example, suppose you have an electronic signal equal to
f (x) = 2x for 0 ≤ x ≤ 2. To predict the value of the signal at
x = −1, you would want to know whether or not the signal
was periodic. If the signal is periodic, explain why f (−1) = 2
would be a good prediction. In some applications, you would
assume that the function is even. That is, f (x) = f (−x) for all
x . In this case, you want f (x) = 2(−x) = −2x for −2 ≤ x ≤ 0.

Graph the even extension f (x) =
{−2x if − 2 ≤ x ≤ 0

2x if 0 ≤ x ≤ 2
.

Find the even extension for (a) f (x) = x2 + 2x + 1, 0 ≤ x ≤ 2
and (b) f (x) = e−x , 0 ≤ x ≤ 2.

3. Similar to the even extension discussed in exploratory exer-
cise 2, applications sometimes require a function to be odd;
that is, f (−x) = − f (x). For f (x) = x2, 0 ≤ x ≤ 2, the odd
extension requires that for −2 ≤ x ≤ 0, f (x) = − f (−x) =
−(−x)2 = −x2 so that f (x) =

{ −x2 if − 2 ≤ x ≤ 0
x2 if 0 ≤ x ≤ 2

. Graph

y = f (x) and discuss how to graphically rotate the right half of
the graph to get the left half of the graph. Find the odd extension
for (a) f (x) = x2 + 2x , 0 ≤ x ≤ 2 and (b) f (x) = e−x − 1,
0 ≤ x ≤ 2.
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0.7 PARAMETRIC EQUATIONS AND POLAR COORDINATES

RoboCup is an international competition of robot soccer teams. These are not the remote-
controlled attack robots you may have seen on television. Instead, the robots are engineered
and programmed to automatically respond to the positions of the ball, goal and other players.
As programmers of such robots, we would be frustrated by the limitations of the x-y system
(called rectangular coordinates) we have used in the first six sections of this chapter. First
of all, the path followed by a robot is unlikely to pass the vertical line test for a function.
Even if it did, the path of the robot is irrelevant unless we know when the robot was at each
point. Further, what a robot needs to know about a competitor are its distance and direction,
not its x- and y-coordinates.

In this section, we introduce two alternatives to functions in rectangular coordinates.
Parametric equations will enable us to track the position of an object as a function of time.
Polar coordinates enable us to keep track of points in terms of distance and direction. These
alternative descriptions give us a great deal of needed flexibility for attacking a variety of
problems. Many complicated looking graphs have a very simple description in parametric
equations or polar coordinates.

Parametric Equations
To describe the position of an object (such as a robot) in terms of time, we need functions
g(t) and h(t) that give the object’s x- and y-coordinates, respectively, at any given time t .
So, from this description, we not only know the path the object follows, but we also know
when it passes through each point. This is the motivation for the following general definition
of parametric equations.

Given any pair of functions g(t) and h(t) defined on the same domain D, the
equations

x = g(t), y = h(t)

are called parametric equations. Notice that for each choice of t , the parametric equations
specify a point (x, y) = (g(t), h(t)) in the xy-plane. The collection of all such points is
called the graph of the parametric equations. The graph is a curve in the xy-plane, referred
to as a parametric curve.

The choice of the letter t to denote the independent variable (called the parameter)
should make you think of time. In many situations, this is exactly what the parameter
represents. In some applications, the parameter has an interpretation other than time; in
others, it has no physical meaning at all. In general, the parameter can be any quantity that
is convenient for describing the relationship between x and y. In our first example, we can
simplify our discussion by eliminating the parameter.

EXAMPLE 7.1 Graphing a Parametric Curve

Sketch the curve defined by the parametric equations x = 6 − t2, y = t/2, for −2 ≤ t ≤ 4.

Solution In the table that follows, we list a number of values of the parameter t and the
corresponding values of x and y.

t −2 −1 0 1 2 3 4

x 2 5 6 5 2 −3 −10

y −1 − 1
2 0 1

2 1 3
2 2
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FIGURE 0.78

x = 6 − t2, y = t

2
, −2 ≤ t ≤ 4.

We have plotted these points and connected them with a smooth curve in Figure 0.78.
You might also notice that we can easily eliminate the parameter here, by solving for t
in terms of y. We have t = 2y, so that x = 6 − 4y2. The graph of this last equation is
a parabola opening to the left. The plane curve we’re looking for is the portion of this
parabola corresponding to −2 ≤ t ≤ 4. From the table, notice that this corresponds to
−1 ≤ y ≤ 2, so that the plane curve is the portion of the parabola indicated in Figure 0.78,
where we have also indicated a number of points on the curve. �

You probably noticed the small arrows drawn on top of the plane curve in Figure 0.78.
These indicate the orientation of the curve (i.e., the direction of increasing t). In the case
where t represents time and the curve represents the path of an object, notice that the
orientation indicates the direction followed by the object as it traverses the path, as in the
following example.

EXAMPLE 7.2 The Path of a Projectile

The path of a projectile thrown horizontally with initial speed of 20 ft/s from a height of
64 feet, has parametric equations x = 20t , y = 64 − 16t2, for 0 ≤ t ≤ 2. Sketch the path.

y

x
20 40

20

40

60

FIGURE 0.79
Path of projectile.

Solution As in example 7.1, we can solve for t , to get t = x/20, so that y = 64 − x2

25
.

With 0 ≤ t ≤ 2, we get 0 ≤ x ≤ 40. The portion of the parabola y = 64 − x2

25
with

0 ≤ x ≤ 40 is shown in Figure 0.79. Note that in this case, the orientation indicated in
the graph gives the direction of motion. Although we used the x-y equation for graphing,
observe that the parametric equations also tell us when the object is located at a given
point and indicates the direction of motion. �

Graphing calculators and computer algebra systems sketch a parametric graph by plot-
ting points corresponding to a large number of values of the parameter t and then connecting
the plotted points with a smooth curve. The appearance of the resulting graph depends greatly
on the graphing window used and also on the particular choice of t-values. This can be seen
in the following example.

EXAMPLE 7.3 Parametric Equations Involving Sines and Cosines

Sketch the curve defined by the parametric equations

x = 2 cos t, y = 2 sin t, for (a) 0 ≤ t ≤ 2π and (b) 0 ≤ t ≤ π (7.1)
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Solution The default graph produced by most graphing calculators looks something
like the curve shown in Figure 0.80a (where we have added arrows indicating the
orientation). With some thought, we can improve this sketch. First, notice that since
x = 2 cos t , x ranges between −2 and 2. Similarly, y ranges between −2 and 2. Changing
the graphing window to −2.1 ≤ x ≤ 2.1 and −2.1 ≤ y ≤ 2.1 produces the curve shown
in Figure 0.80b. The curve still looks like an ellipse, but with some more thought we
can identify it as a circle. Rather than eliminate the parameter by solving for t in terms
of either x or y, instead notice from (7.1) that

x2 + y2 = 4 cos2 t + 4 sin2 t = 4(cos2 t + sin2 t) = 4.

So, the plane curve lies on the circle of radius 2 centered at the origin. In fact, it’s the
whole circle, as we can see by recognizing what the parameter represents in this case.
Recall from the definition of sine and cosine that if (x , y) is a point on the unit circle and
θ is the angle from the positive x-axis to the line segment joining (x , y) and the origin,
then we define cos θ = x and sin θ = y. Since we have x = 2 cos t and y = 2 sin t , the
parameter t corresponds to the angle θ . Further, the curve is the entire circle of radius
2, traced out as the angle t ranges from 0 to 2π . A “square” graphing window is one
with the same scale on the x- and y-axes (not necessarily the same x and y ranges, but
the same scales!). Some programs generate such a window when you specify an aspect
ratio of 1. Such a square window gives us the circle seen in Figure 0.80c. Finally, what
would change if the domain were limited to 0 ≤ t ≤ π? Since we’ve identified t as the
angle as measured from the positive x-axis, it should be clear that you will now get the
top half of the circle of radius 2, as shown in Figure 0.80d.
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FIGURE 0.80a
x = 2 cos t, y = 2 sin t .
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FIGURE 0.80b
x = 2 cos t, y = 2 sin t .
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FIGURE 0.80c
A circle.

FIGURE 0.80d
Top semicircle.

�

REMARK 7.1

To sketch a parametric graph on
a CAS, you may need to write
the equations in vector format.
For instance, in the case of
example 7.3, instead of entering
x = 2 cos t and y = 2 sin t , you
would enter the ordered pair of
functions (2 cos t, 2 sin t).

Simple modifications to the parametric equations in example 7.3 will produce a variety
of circles and ellipses. We explore this in example 7.4 and the exercises.

EXAMPLE 7.4 More Circles and Ellipses Defined
by Parametric Equations

Identify the plane curves (a) x = 2 cos t , y = 3 sin t , (b) x = 2 + 4 cos t , y = 3 + 4 sin t
and (c) x = 3 cos 2t , y = 3 sin 2t , all for 0 ≤ t ≤ 2π .

y

x
2�2

�3

3

FIGURE 0.81a
x = 2 cos t, y = 3 sin t .

Solution A computer-generated sketch of (a) is shown in Figure 0.81a. It’s difficult to
determine from the sketch whether the curve is an ellipse or simply a distorted graph of a
circle. You should rule out a circle, since the parametric equations produce x-values be-
tween −2 and 2 and y-values between −3 and 3. To verify that this is an ellipse, notice that

x2

4
+ y2

9
= 4 cos2 t

4
+ 9 sin2 t

9
= cos2 t + sin2 t = 1.
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A computer-generated sketch of (b) is shown in Figure 0.81b. You should verify that
this is the circle (x − 2)2 + (y − 3)2 = 16. Finally, a computer sketch of (c) is shown in
Figure 0.81c. You should verify that this is the circle x2 + y2 = 9. So, what is the role of
the 2 in the argument of cosine and sine? If you sketched this on a calculator, you may
have noticed that the circle was completed long before the calculator finished graphing.
Because of the 2, a complete circle corresponds to 0 ≤ 2t ≤ 2π or 0 ≤ t ≤ π . With the
domain 0 ≤ t ≤ 2π , the circle is traced out twice. You might say that the factor of 2 in
the argument doubles the speed with which the curve is traced.
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x
3�3
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3

FIGURE 0.81b
x = 2 + 4 cos t, y = 3 + 4 sin t .

FIGURE 0.81c
x = 3 cos 2t, y = 3 sin 2t .

�

In example 7.5, we see how to find parametric equations for a line segment.
REMARK 7.2

Look carefully at the plane curves
in examples 7.3 and 7.4 until you
can identify the roles of each of
the constants in the equations x =
a + b cos ct, y(t) = d + e sin ct .
These interpretations are
important in applications. In
particular, (a, d) is the center of
an ellipse with axes of length 2b
and 2e.

EXAMPLE 7.5 Parametric Equations for a Line Segment

Find parametric equations for the line segment joining the points (1, 2) and (4, 7).

Solution For a line segment, notice that the parametric equations can be linear functions.
That is,

x = a + bt, y = c + dt,

for some constants a, b, c and d. (Eliminate the parameter t to see why this generates
a line.) The simplest way to choose these constants is to have t = 0 correspond to the
starting point (1, 2). Note that if t = 0, the equations reduce to x = a and y = c. To start
our segment at x = 1 and y = 2, we set a = 1 and c = 2. Now note that with t = 1, the
equations are x = a + b and y = c + d. To produce the endpoint (4, 7), we must have
a + b = 4 and c + d = 7. With a = 1 and c = 2, solve to get b = 3 and d = 5. We now
have that

x = 1 + 3t, y = 2 + 5t, for 0 ≤ t ≤ 1

is a pair of parametric equations describing the line segment. �

In general, for parametric equations of the form x = a + bt, y = c + dt , notice that
you can always choose a and c to be the x- and y-coordinates, respectively, of the starting
point (since x = a, y = b corresponds to t = 0). Then b is the difference in x-coordinates
(endpoint minus starting point) and d is the difference in y-coordinates. With these choices,
the line segment is always sketched out for 0 ≤ t ≤ 1.
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REMARK 7.3

Note that in example 7.5, as for all parametric equations, there are an infinite number
of choices of parameters that produce a given curve. For instance, you can easily
verify that the parametric equations

x = −2 + 3t, y = −3 + 5t, for 1 ≤ t ≤ 2

and

x = t, y = 1 + 5t

3
, for 1 ≤ t ≤ 4

also produce the line segment of example 7.5. We say that each of these pairs of
parametric equations is a different parameterization of the curve.

As we illustrate with example 7.6, every equation of the form y = f (x) can be simply
written in parametric equations.

EXAMPLE 7.6 Parametric Equations from an x-y Equation

Find parametric equations for the portion of the parabola y = x2 from (−1, 1) to (3, 9).

Solution Any equation of the form y = f (x) can be converted to parametric form by
simply letting x equal t . Here, this gives us y = x2 = t2. Then

x = t, y = t2, for − 1 ≤ t ≤ 3,

is a parametric representation of the curve. (Of course, you can use the letter x as the
parameter instead of the letter t if you prefer.) �

We can describe many plane curves parametrically that are unlike anything you’ve seen
so far in your studies. Many of these are difficult to draw by hand, but can be easily plotted
with a graphing calculator or CAS.
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x
2 4�2�4

�4

�2

2

4

FIGURE 0.82a
x = t2 − 2, y = t3 − t .

y

x
4 8�4�8

6

4

2

FIGURE 0.82b
x = t3 − t, y = t4 − 5t2 + 4.

EXAMPLE 7.7 Some Unusual Plane Curves

Sketch the plane curves (a) x = t2 − 2, y = t3 − t and (b) x = t3 − t, y = t4 − 5t2 + 4.

Solution A sketch of (a) is shown in Figure 0.82a. This is clearly not the graph of
any function (consider the vertical line test to see why), so converting to an x-y equation
would not be particularly helpful. You should, however, examine the parametric equations
to see if important portions of the graph have been left out (e.g., is there supposed to be
anything to the left of x = −2?). In this case, x = t2 − 2 ≥ −2 for all t and y = t3 − t
has no maximum or minimum (think about why). It seems that most of the graph is
indeed shown in Figure 0.82a. A computer sketch of (b) is shown in Figure 0.82b. Again,
this is not the graph of a function. To get an idea of the scope of the graph, note that
x = t3 − t has no maximum or minimum. To find the minimum of y = t4 − 5t2 + 4,
note that

t4 − 5t2 + 4 = (t2 − 5/2)2 − 9

4
.

You should conclude that y ≥ − 9
4 , as indicated in Figure 0.82b. �
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In section 0.3, we found the relationship between graphs of one-to-one functions and
their inverses. Recall that you can reflect the graph of y = f (x) across the line y = x to
get the graph of y = f −1(x). (See Figure 0.83a.) Using parametric equations, this can be
easily implemented on a graphing calculator.

y

x

y � f (x)
y � x

y � f �1(x)

FIGURE 0.83a
y = f (x) and y = f −1(x).

21�1�2

�20

20

�10

10

y

x

FIGURE 0.83b
y = x5 + 8x3 + x + 1.

EXAMPLE 7.8 Drawing the Graph of an Unknown Inverse Function

Draw a graph of the inverse function of f (x) = x5 + 8x3 + x + 1.

Solution Given the graph of f (x) (see Figure 0.83b), we could certainly draw by hand
part of the graph of the inverse. However, recall that if (x, y) is a point on the graph of
f (x) [i.e., y = f (x)], then (y, x) is a point on the graph of f −1(x) [i.e., x = f −1(y)].
The simplest choice of parametric equations for y = f (x) is

x = t

y = f (t).

Swapping x and y now gives parametric equations for f −1(x), namely,

x = f (t)

y = t.

In this case, we want x = t5 + 8t3 + t + 1 and y = t . The graph of f −1(x) along with
the graphs of f (x) and y = x are shown in Figures 0.83c and 0.83d.
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FIGURE 0.83c
y = f −1(x).

FIGURE 0.83d
y = f (x) and y = f −1(x).

�

You should now have some idea of the flexibility of parametric equations. This flexibility
alone increases our ability to solve problems and makes the study of parametric equations
worthwhile.

Polar Coordinates
The search for a more convenient description of a graph leads us to some important ideas.
Recall that in our discussion of robot soccer, we observed that in the heat of the action,
information about the distance and direction to the goal is more important than the x- and
y-coordinates of the goal. This kind of description is the idea behind polar coordinates.

You are familiar with the rectangular coordinates (x, y) of a point, where we identify
a point by its horizontal displacement x and vertical displacement y from the origin.
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An alternative description of a point in the xy-plane consists of specifying the distance r
from the point to the origin and the angle θ (in radians) measured from the positive x-axis
counterclockwise to the ray connecting the point and the origin (see Figure 0.84). We
describe the point by the ordered pair (r, θ ) and refer to r and θ as polar coordinates for
the point.

y

x

(r, u )

r

u

FIGURE 0.84
Polar coordinates.

EXAMPLE 7.9 Converting from Polar to Rectangular Coordinates

Plot the points with the indicated polar coordinates and determine the corresponding
rectangular coordinates (x, y), for: (a) (2, 0), (b) (3, π

2 ), (c) (−3, π
2 ) and (d) (2, π ).

Solution (a) Notice that the angle θ = 0 locates the point on the positive x-axis. At a
distance of r = 2 units from the origin, this corresponds to the point (2, 0) in rectangular
coordinates (see Figure 0.85a).

(b) The angle θ = π
2 locates points on the positive y-axis. At a distance of r = 3

units from the origin, this corresponds to the point (0, 3) in rectangular coordinates (see
Figure 0.85b).

(c) The angle is the same as in (b), but a negative value of r indicates that the point
is located 3 units in the opposite direction, at the point (0, −3) in rectangular coordinates
(see Figure 0.85b).

(d) The angle θ = π corresponds to the negative x-axis. The distance of r = 2
units from the origin gives us the point (−2, 0) in rectangular coordinates (see
Figure 0.85c).

y

x
(2, 0)

2

y

x

3

�3

(3, q)

(�3, q)

q

2

y

x
(2, p) p

FIGURE 0.85a
The point (2, 0) in polar
coordinates.

FIGURE 0.85b

The points

(
3,

π

2

)
and

(
−3,

π

2

)
in polar coordinates.

FIGURE 0.85c
The point (2, π ) in polar
coordinates.

�

EXAMPLE 7.10 Converting from Rectangular to Polar Coordinates

Find all polar coordinate representations of the rectangular point (1, 1).

Solution From Figure 0.86a (on the following page), notice that the point lies on the line
y = x , which makes an angle of π

4 with the positive x-axis. From the distance formula,
we get that r = √

12 + 12 = √
2. This says that we can write the point as

(√
2, π

4

)
in

polar coordinates. Referring to Figure 0.86b, notice that we can specify the same point by
using a negative value of r, r = −√

2 with the angle 5π
4 . (Think about this some.) Notice

further, that the angle 9π
4 = π

4 + 2π corresponds to the same ray shown in Figure 0.86a
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(see Figure 0.86c). In fact, all of the polar points
(√

2, π
4 + 2nπ

)
and

(−√
2, 5π

4 + 2nπ
)

for any integer n correspond to the same point in the xy-plane.

y

x
1

1

d

�2

y

x
1

1

h

�2

y

x
1

1

, � d � 2p

�2

FIGURE 0.86a
Polar coordinates for the point (1, 1).

FIGURE 0.86b
An alternative polar representation
of (1, 1).

FIGURE 0.86c
Another polar representation of the
point (1, 1).

�

REMARK 7.4

Given a distance r and angle θ , there is exactly one point in the xy-plane with the
polar coordinates (r, θ ). However, as we saw in example 7.10, for a given point (x, y)
in the plane, there are an infinite number of possible polar coordinate representations.
In particular, you can use both positive and negative values of r . Also, for a given
angle θ , the angles θ ± 2π, θ ± 4π and so on, all correspond to the same ray and can
also be used. For convenience, we use the notation θ + 2nπ (for any integer n) to
represent all of these possible angles.

y

x

(r, u )

r

x � r cos u

y � r sin u

u

FIGURE 0.87
Converting from polar to rectangular
coordinates.

Referring to Figure 0.87, notice that it is a simple matter to find the rectangular co-
ordinates (x, y) of a point specified in polar coordinates as (r, θ ). From the usual definitions
for sin θ and cos θ , we get

x = r cos θ and y = r sin θ. (7.2)

As we’ve already observed, a given point (x, y) in the plane will have infinitely many polar
coordinate representations. From equations (7.2), notice that

x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2(cos2 θ + sin2 θ ) = r2

and for x �= 0,

y

x
= r sin θ

r cos θ
= sin θ

cos θ
= tan θ.

That is, every polar coordinate representation (r, θ ) of the point (x, y), where x �= 0 must
satisfy

r2 = x2 + y2 and tan θ = y

x
. (7.3)
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Notice that since there’s more than one choice of r and θ , we cannot actually solve equations
(7.3) to produce formulas for r and θ . In particular, while you might be tempted to write
θ = tan−1

( y
x

)
, this is not the only possible choice. Remember that for (r, θ ) to be a polar

representation of the point (x, y), θ can be any angle for which tan θ = y
x , while tan−1

( y
x

)
gives you only one angle θ in the interval

(−π
2 , π

2

)
. Finding polar coordinates for a given

point is typically a process involving some graphing and some thought.

EXAMPLE 7.11 Converting from Rectangular to Polar Coordinates

Find all polar coordinate representations for the rectangular points (a) (2, 3) and
(b) (−3, 1).

Solution (a) With x = 2 and y = 3, we have from (7.3) that

r2 = x2 + y2 = 22 + 32 = 13,

so that r = ±√
13. Also,

tan θ = y

x
= 3

2
.

One solution of this (the most obvious solution) is θ = tan−1
(

3
2

) ≈ 0.98 radians. To
determine which choice of r corresponds to this angle, note that (2, 3) is located in the
first quadrant (see Figure 0.88a). Since 0.98 radians also puts you in the first quadrant,
this angle corresponds to the positive value of r , so that

(√
13, tan−1

(
3
2

))
is one po-

lar representation of the point. The negative choice of r corresponds to an angle one
half-circle (i.e., π radians), away (see Figure 0.88b), so that another representation is(−√

13, tan−1
(

3
2

) + π
)
. Every other polar representation is found by adding multiples

of 2π to the two angles used above. That is, every polar representation of the point (2,
3) must have the form

(√
13, tan−1

(
3
2

) + 2nπ
)

or
(−√

13, tan−1
(

3
2

) + 2nπ
)
, for some

integer choice of n.

y

x

�13

u � tan�1(w)
3

2

(2, 3)

y

x

u � tan�1(w)u � tan�1(w) � p

(2, 3)

FIGURE 0.88a
The point (2, 3).

FIGURE 0.88b
Negative value of r .

(b) For the point (−3, 1), we have x = −3 and y = 1. From (7.3), we have

r2 = x2 + y2 = (−3)2 + 12 = 10,
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so that r = ±√
10. Further,

tan θ = y

x
= 1

−3
,

so that the most obvious choice for the polar angle is θ = tan−1
(− 1

3

) ≈ −0.32, which lies
in the fourth quadrant. Since the point (−3, 1) is in the second quadrant, this choice
of the angle corresponds to the negative value of r (see Figure 0.89). The positive
value of r then corresponds to the angle θ = tan−1

(− 1
3

) + π . Observe that all po-
lar coordinate representations must then be of the form

(−√
10, tan−1

(− 1
3

) + 2nπ
)

or
(√

10, tan−1
(− 1

3

) + π + 2nπ
)
, for some integer choice of n. �

y

x

u � tan�1(�a)

(�3, 1) u � tan�1(�a) � p

FIGURE 0.89
The point (−3, 1).

Observe that the conversion from polar coordinates to rectangular coordinates is com-
pletely straightforward, as in example 7.12.

EXAMPLE 7.12 Converting from Polar to Rectangular Coordinates

Find the rectangular coordinates for the polar points (a)
(
3, π

6

)
and (b) (−2, 3).

Solution For (a), we have from (7.2) that

x = r cos θ = 3 cos
π

6
= 3

√
3

2

and

y = r sin θ = 3 sin
π

6
= 3

2
.

The rectangular point is then
(

3
√

3
2 , 3

2

)
. For (b), we have

x = r cos θ = −2 cos 3 ≈ 1.98

and

y = r sin θ = −2 sin 3 ≈ −0.28.

The rectangular point is (−2 cos 3, −2 sin 3), which is located at approximately
(1.98, −0.28). �

y

2�2

�2

2

x

r � 2

FIGURE 0.90a
The circle r = 2.

The graph of a polar equation r = f (θ ) is the set of all points (x, y) for which
x = r cos θ, y = r sin θ and r = f (θ ). In other words, the graph of a polar equation is
a graph in the xy-plane of all those points whose polar coordinates satisfy the given equa-
tion. We begin by sketching two very simple (and familiar) graphs. The key to draw-
ing the graph of a polar equation is to always keep in mind what the polar coordinates
represent.

REMARK 7.5

Notice that for any point (x, y)
specified in rectangular
coordinates (x �= 0), we can
always write the point in polar
coordinates using either of the
polar angles tan−1

( y
x

)
or

tan−1
( y

x

) + π . You can
determine which angle
corresponds to r =

√
x2 + y2 and

which corresponds to
r = −

√
x2 + y2 by looking at the

quadrant in which the point lies.

EXAMPLE 7.13 Some Simple Graphs in Polar Coordinates

Sketch the graphs of (a) r = 2 and (b) θ = π/3.

Solution For (a), notice that 2 = r =
√

x2 + y2, and so, we want all points whose
distance from the origin is 2 (with any polar angle θ ). Of course, this is the definition
of a circle of radius 2 with center at the origin (see Figure 0.90a). For (b), notice that
θ = π/3 specifies all points with a polar angle of π/3 from the positive x-axis (at any



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

PB480-00 PB480-Smith-v13.cls July 6, 2004 11:24

SECTION 0.7 Parametric Equations and Polar Coordinates 77

distance r from the origin). Including negative values for r , this defines a line with slope
tan π/3 = √

3 (see Figure 0.90b). �

REMARK 7.6

Calculators sketch polar graphs of r = f (θ ) by computing the value of f (θ ) for
numerous values of θ at regularly spaced values of θ and then plotting the resulting
points (x, y). You should be aware that the appearance of a calculator plot depends on
the x-y graphing window specified and also on the range of displayed values of θ . When
drawing polar graphs, you should identify any values of θ corresponding to r = 0 or
to where r reaches a maximum or minimum. In addition, you should identify the range
of values of θ that produces one copy of the polar curve, when this is appropriate.

y

x
u

FIGURE 0.90b
The line θ = π

3 .

It turns out that many familiar curves have simple polar equations.

y

x

�1

1

q wp 2p

FIGURE 0.91
y = sin x plotted in rectangular
coordinates.

EXAMPLE 7.14 A Surprisingly Simple Polar Graph

Sketch the graph of the polar equation r = sin θ .

Solution For reference, we first sketch a graph of the sine function in rectangular
coordinates on the interval [0, 2π ] (see Figure 0.91). Notice that on the interval 0 ≤ θ ≤
π
2 , sin θ increases from 0 to its maximum value of 1. Then, on the interval π

2 ≤ θ ≤
π, sin θ decreases from 1 to 0. When plotting the polar graph, keep in mind that r = 0
corresponds to the origin. Next, on the interval π ≤ θ ≤ 3π

2 , sin θ decreases from 0 to its
minimum value of −1. Since the values of r are negative, remember that this means that
the points plotted are in the opposite quadrant (i.e., the first quadrant). Notice that this
traces out the same curve in the first quadrant as we’ve already drawn for 0 ≤ θ ≤ π

2 .
Likewise, taking θ in the interval 3π

2 ≤ θ ≤ 2π retraces the portion of the curve in the
second quadrant. Since sin θ is periodic of period 2π , taking further values of θ simply
retraces portions of the curve that we have already traced. A sketch of the polar graph is
shown in Figure 0.92. We now verify that this curve is actually a circle. Notice that if we
multiply the equation r = sin θ through by r , we get

r2 = r sin θ.

You should immediately recognize from (7.2) and (7.3) that y = r sin θ and r2 = x2 + y2.
This gives us the rectangular equation

x2 + y2 = y

or

0 = x2 + y2 − y.

Completing the square, we get

0 = x2 +
(

y2 − y + 1

4

)
− 1

4

and, adding 1
4 to both sides, (

1

2

)2

= x2 +
(

y − 1

2

)2

.

This is the rectangular equation for the circle of radius 1
2 centered at the point

(
0, 1

2

)
,

which is what we see in Figure 0.92. �

y

x
1�1

1

FIGURE 0.92
The circle r = sin θ.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

PB480-00 PB480-Smith-v13.cls July 6, 2004 11:24

78 CHAPTER 0 Preliminaries

The graphs of many polar equations are not the graphs of any functions of the form
y = f (x), as in example 7.15.

y

x
20�20

�20

20

FIGURE 0.93
The spiral r = θ, θ ≥ 0.

EXAMPLE 7.15 An Archimedian Spiral

Sketch the graph of the polar equation r = θ , for θ ≥ 0.

Solution Notice that here, as θ increases, so too does r . That is, as the polar angle
increases, the distance from the origin also increases accordingly. This produces the
spiral (an example of an Archimedian spiral) seen in Figure 0.93. �

The graph in example 7.16 is in the general class known as limaçons. This class of
graphs is defined by r = a ± b sin θ or r = a ± b cos θ for positive constants a and b.
Additional graphs of limaçons are shown in Appendix A.
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q wp 2p

FIGURE 0.94
y = 3 + 2 cos x in rectangular
coordinates.

EXAMPLE 7.16 A Limaçon

Sketch the graph of the polar equation r = 3 + 2 cos θ .

Solution We begin by sketching the graph of y = 3 + 2 cos x in rectangular coordinates
on the interval [0, 2π ] to use as a reference (see Figure 0.94). Notice that in this case,
we have r = 3 + 2 cos θ > 0 for all values of θ . Further, the maximum value of r is 5
(corresponding to when cos θ = 1 at θ = 0, 2π , etc.) and the minimum value of r is 1
(corresponding to when cos θ = −1 at θ = π, 3π , etc.). In this case, the graph is traced
out with 0 ≤ θ ≤ 2π . We summarize the intervals of increase and decrease for r in the
following table.

Interval cosθ r � 3 � 2 cosθ[
0, π

2

]
Decreases from 1 to 0 Decreases from 5 to 3[

π

2 , π
]

Decreases from 0 to −1 Decreases from 3 to 1[
π, 3π

2

]
Increases from −1 to 0 Increases from 1 to 3[

3π

2 , 2π
]

Increases from 0 to 1 Increases from 3 to 5

In Figures 0.95a–0.95d, we show how the sketch progresses through each interval indi-
cated in the table, with the completed figure (called a limaçon) shown in Figure 0.95d.

1 2 3 4 5
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�1
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x
�1 1 2 3 4 5�1
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2
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y

x

FIGURE 0.95a
0 ≤ θ ≤ π

2 .
FIGURE 0.95b
0 ≤ θ ≤ π .
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FIGURE 0.95c
0 ≤ θ ≤ 3π

2 .
FIGURE 0.95d
0 ≤ θ ≤ 2π .

�

EXERCISES 0.7

WRITING EXERCISES

1. Interpret in words the roles of each of the constants in the

parametric equations

{
x = a1 + b1 cos (ct)
y = a2 + b2 sin (ct)

.

2. As indicated in remark 7.3, a given curve can be described by
numerous sets of parametric equations. Explain why several
different equations can all be correct. (Hint: Emphasize the
fact that t is a dummy variable.)

3. Suppose a point has polar representation (r, θ ). Explain why
another polar representation of the same point is (−r, θ + π ).

4. After working with rectangular coordinates for so long, the idea
of polar representations may seem slightly awkward. However,
polar representations are entirely natural in many settings. For
instance, if you were on a ship at sea and another ship was ap-
proaching you, explain whether you would use a polar repre-
sentation (distance and bearing) or a rectangular representation
(distance east-west and distance north-south).

In exercises 1–12, sketch the graph defined by the given para-
metric equations and find a corresponding x-y equation for the
curve.

1.
{

x = 3 cos t
y = 3 sin t

2.
{

x = 2 cos t
y = 3 sin t

3.
{

x = 1 + 2 cos t
y = −2 + 2 sin t

4.
{

x = 2 sin t
y = 3 cos t

5.
{

x = −1 + 2t
y = 3t

6.
{

x = 4 + 3t
y = 2 − 4t

7.
{

x = 1 + t
y = t2 + 2

8.
{

x = 2 − t
y = t2 + 1

9.
{

x = t2 − 1
y = 2t

10.
{

x = t2 + 1
y = t − 1

11.
{

x = t2 − 1
y = t2 + 1

12.
{

x = cos t
y = 3 cos t − 1

In exercises 13–20, use your CAS or graphing calculator
to sketch the plane curves defined by the given parametric
equations.

13.
{

x = t3 − 2t
y = t2 − 3

14.
{

x = t3 − 2t
y = t2 − 3t

15.
{

x = t2 − 1
y = t4 − 4t

16.
{

x = t2 − 1
y = t4 − 4t2

17.

{
x = cos t − 1

2 cos 3t

y = sin t − 1
2 sin 3t

18.

{
x = cos t − 1

2 cos 4t

y = sin t − 1
2 sin 4t

19.
{

x = cos 2t
y = sin 7t

20.
{

x = cos 2t
y = sin π t

In exercises 21–26, match the parametric equations with the
corresponding plane curve displayed below. Give reasons for
your choices.

21.
{

x = t2 − 1
y = t4 22.

{
x = t − 1
y = t3

23.
{

x = t2 − 1
y = sin t

24.
{

x = t2 − 1
y = sin 2t

25.
{

x = cos 3t
y = sin 2t

26.
{

x = 3 cos t
y = 2 sin t
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In exercises 27–32, find parametric equations describing the
given curve.

27. (a) The line segment from (0, 1) to (3, 4)
(b) The line segment from (3, 1) to (1, 3)

28. (a) The portion of the parabola y = x2 + 1 from (1, 2) to (2, 5)
(b) The portion of the parabola y = 2x2 − 1 from (0, −1) to

(2, 7)

29. (a) The circle of radius 3 centered at (2, 1), drawn counter-
clockwise.

(b) The circle of radius 5 centered at (−1, 3), drawn counter-
clockwise.

30. (a) The ellipse with vertices (2, 0), (0, 4), (−2, 0) and (0, −4)
(b) The ellipse with vertices (0, 3), (2, 4), (4, 3) and (2, 2)

31. (a) The inverse of f (x) = x5 + 2x3 + 4x − 2
(b) The inverse of f (x) = 4x3 + 2x

32. (a) The inverse of f (x) = ex − e−x

ex + e−x

(b) The inverse of f (x) = tan−1 x

In exercises 33–38, plot the given polar points (r, θ) and find
their rectangular representation.

33. (2, 0) 34. (2, π ) 35. (−2, π )

36. (−3, 3π

2 ) 37. (3, −π ) 38. (5, − π

2 )
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In exercises 39–44, find all polar coordinates representations of
the given rectangular point.

39. (2, −2) 40. (−1, 1)

41. (2, −1) 42. (3, 4)

43. (−√
3, 1) 44. (0, −4)

In exercises 45–48, find rectangular coordinates for the given
polar point.

45. (2, − π

3 ) 46. (0, 3)

47. (3, π

8 ) 48. (−3, 1)

In exercises 49–56, sketch the graph of the polar equation and
find a corresponding x-y equation.

49. r = 4 50. r = √
3

51. θ = π/6 52. θ = 3π/4

53. r = cos θ 54. r = 2 cos θ

55. r = 3 sin θ 56. r = 2 sin θ

In exercises 57–64, sketch the graph and identify all values of θ
where r � 0 and a range of values of θ that produces one copy
of the graph.

57. r = cos 2θ 58. r = cos 3θ

59. r = 3 + 2 sin θ 60. r = 2 − 2 cos θ

61. r = 2 − 4 sin θ 62. r = 2 + 2 sin θ

63. r = 1
4 θ 64. r = eθ/4

65. Based on your graphs in exercises 53 and 54, conjecture the
graph of r = a cos θ for any positive constant a.

66. Based on the graphs in exercises 57 and 58 and others (try
r = cos 4θ and r = cos 5θ), conjecture the graph of r = cos nθ

for any positive integer n.

In exercises 67–72, find a polar equation corresponding to the
given rectangular equation.

67. y2 − x2 = 4 68. x2 + y2 = 9

69. x2 + y2 = 16 70. x2 + y2 = x

71. y = 3 72. x = 2

73. Compare the graphs of

{
x = cos 2t
y = sin t

and

{
x = cos t
y = sin 2t

. Use

the identities cos 2t = cos2 t − sin2 t and sin 2t = 2 cos t sin t
to find x-y equations for each graph.

74. Sketch the graph of

{
x = 1

2 cos t − 1
4 cos 2t

y = 1
2 sin t − 1

4 sin 2t
. This heart-shaped

curve is the largest feature of the Mandelbrot set, one of the
most famous mathematical sets. Portions of the Mandelbrot
set have been turned into colorful T-shirts and posters that you
may have seen.

Mandelbrot set. Mandelbrot zoom.

To progress further on a sketch of the Mandelbrot set, add the

circle

{
x = −1 + 1

4 cos t
y = 1

4 sin t
to your initial sketch.

75. One situation where polar coordinates apply directly to sports
is in making a golf putt. The two factors that the golfer tries
to control are distance (determined by speed) and direction
(usually called the “line”). Suppose a putter is d feet from
the hole, which has radius h = 1

6 . Show that the path of the
ball will intersect the hole if the angle A in the figure satisfies
−sin−1(h/d) < A < sin−1(h/d).

A

  (0, 0)

(r, A)

  (d, 0)

76. The distance r that the golf ball in exercise 75 travels also
needs to be controlled. The ball must reach the front of
the hole. In rectangular coordinates, the hole has equation
(x − d)2 + y2 = h2, so the left side of the hole is x = d −√

h2 − y2. Show that this converts in polar coordinates to
r = d cos θ −

√
d2 cos2 θ − (d2 − h2). (Hint: Substitute for x

and y, isolate the square root term, square both sides, combine
r 2 terms and use the quadratic formula.)

77. The golf putt in exercises 75 and 76 will not go in the hole if it
is hit too hard. Suppose that the putt would go r = d + c feet
if it did not go in the hole (c > 0). For a putt hit toward the
center of the hole, define b to be the largest value of c such that
the putt goes in (i.e., if the ball is hit more than b feet past the
hole, it is hit too hard). Experimental evidence (see Dave Pelz’s
Putt Like the Pros) shows that at other angles A, the distance r

must be less than d + b

(
1 −

[
A

sin−1(h/d)

]2
)

. The results of

exercises 75 and 76 define limits for the angle A and distance
r of a successful putt. Identify the functions r1(A) and r2(A)
such that r1(A) < r < r2(A) and constants A1 and A2 such that
A1 < A < A2.
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78. Take the general result of exercise 77 and apply it to a putt
of d = 15 feet with a value of b = 4 feet. Visualize this by
graphing the region

15 cos θ −
√

225 cos2 θ − (225 − 1/36)

< r < 15 + 4

(
1 −

[
θ

sin−1(1/90)

]2
)

with −sin−1(1/90) < θ < sin−1(1/90). A good choice of
graphing windows is 13.8 ≤ x ≤ 19 and −0.5 ≤ y ≤ 0.5.

79. Find parametric equations for the path traced out by a specific
point on a circle of radius r rolling left to right. (Hint: First,
find parametric equations for the center of the circle, then add
to these parametric equations for the point going around the
center of the circle.) This curve is called a cycloid.

80. Find parametric equations for the path traced out by a specific
point inside the circle as the circle rolls from left to right. (Hint:
If r is the radius of the circle, let d < r be the distance from
the point to the center.) This curve is called a trochoid.

81. A microphone is set up at a specific place in a concert hall. Due
to reflections from walls and other surfaces, sound bounces to
the microphone from a variety of directions and is recorded
by the microphone with a variety of amplitudes. If the am-
plitude r is given as a function of the direction θ , the result-
ing function is called the polar pattern of the microphone.
If r = 2.5 + 2.5 cos θ , in which direction (which value of θ )
do you think the microphone is pointed? If you were standing
behind the microphone (θ = π ), would it be safe for you to
talk?

82. Compare the properties of the microphone in exercise 81 to a
microphone with polar pattern r = 3.6 + 1.4 cos θ .

EXPLORATORY EXERCISES

1. The Flying Zucchini Circus Troupe has a human cannon-
ball act, shooting a performer from a cannon into a specially
padded seat of a turning Ferris wheel. The Ferris wheel has
a radius of 40 feet and rotates counterclockwise at one rev-
olution per minute. The special seat starts at ground level.
Carefully explain why parametric equations for the seat are{

x = 40 cos
(

π

30 t − π

2

)
y = 40 + 40 sin

(
π

30 t − π

2

) . The cannon is located 200 feet

left of the Ferris wheel with the muzzle 10 feet aboveground.
The performer is launched 35 seconds after the wheel starts
turning with an initial velocity of 100 ft/s at an angle of π

5
above the horizontal. Carefully explain why parametric equa-
tions for the human cannonball are{

x = (
100 cos π

5

)
(t − 35) − 200

y = −16(t − 35)2 + (
100 sin π

5

)
(t − 35) + 10

(t ≥ 35).

Determine whether the act is safe or the Flying Zucchini comes
down squash.

2. Rework exploratory exercise 1 with initial velocity 135 ft/s,
launch angle 30◦ and a 27-second delay. How close does the
Flying Zucchini get to the special seat? Given that a Ferris
wheel seat actually has height, width and depth, do you think
that this is close enough? Repeat with (a) initial velocity 75 ft/s,
launch angle 47◦ and 47.25-second delay; (b) initial velocity
118 ft/s, launch angle 35◦ and 28-second delay. Develop crite-
ria for a safe and exciting human cannonball act. Consider each
of the following: Should the launch velocity be large or small?
Should the seat be high or low when the cannonball lands?
Should the human have a positive or negative vertical velocity
at landing? How close (vertically and horizontally) should the
human need to get to the center of the seat? Based on your
criteria, which of the launches in this exercise is the best? Find
an initial velocity, launch angle and launch delay that is better.

REVIEW EXERCISES

CONCEPTS

The following list includes terms that are defined and theorems
that are stated in this chapter. For each term or theorem, (1) give
a precise definition or statement, (2) state in general terms what
it means and (3) describe the types of problems with which it is
associated.

Slope of line Parallel lines Perpendicular lines
Domain Intercepts Zeros of function
Graphing window Local maximum Vertical asymptote
Inverse function One-to-one function Periodic function
Sine function Cosine function Arcsine function
e Exponential function Logarithm
Composition Parametric equations Polar coordinates



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

PB480-00 PB480-Smith-v13.cls July 6, 2004 11:24

CHAPTER 0 REVIEW EXERCISES 83

REVIEW EXERCISES

TRUE OR FALSE

State whether each statement is true or false and briefly explain
why. If the statement is false, try to “fix it” by modifying the given
statement to a new statement that is true.

1. For a graph, you can compute the slope using any two points
and get the same value.

2. All graphs must pass the vertical line test.

3. A cubic function has a graph with one local maximum and one
local minimum.

4. If a function has no local maximum or minimum, then it is
one-to-one.

5. The graph of the inverse of f can be obtained by reflecting the
graph of f across the diagonal y = x .

6. If f is a trigonometric function, then the solution of the equa-
tion f (x) = 1 is f −1(1).

7. Exponential and logarithmic functions are inverses of each
other.

8. All quadratic functions have graphs that look like the parabola
y = x2.

9. Polar coordinates are a specific example of parametric equa-
tions.

10. Every curve has an infinite number of parametric representa-
tions.

In exercises 1 and 2, find the slope of the line through the given
points.

1. (2, 3), (0, 7)

2. (1, 4), (3, 1)

In exercises 3 and 4, determine if the lines are parallel, perpen-
dicular or neither.

3. y = 3x + 1 and y = 3(x − 2) + 4

4. y = −2(x + 1) − 1 and y = 1
2 x + 2

5. Determine if the points (1, 2), (2, 4) and (0, 6) form the vertices
of a right triangle.

6. The data represents populations at various times. Plot the
points, discuss any patterns and predict the population at the
next time: (0, 2100), (1, 3050), (2, 4100) and (3, 5050).

7. Find an equation of the line through the given points and com-
pute the y-coordinate corresponding to x = 4.

y

x
2 4 6

2

4

8. For f (x) = x2 − 3x − 4, compute f (0), f (2) and f (4).

In exercises 9 and 10, find an equation of the line with given
slope and point.

9. m = − 1
3 , (−1, −1) 10. m = 1

4 , (0, 2)

In exercises 11 and 12, use the vertical line test to determine if
the curve is the graph of a function.

11. y

x

12. y

x

In exercises 13 and 14, find the domain of the given function.

13. f (x) = √
4 − x2 14. f (x) = x − 2

x2 − 2
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In exercises 15–28, sketch a graph of the function showing ex-
trema, intercepts and asymptotes.

15. f (x) = x2 + 2x − 8

16. f (x) = x3 − 6x + 1

17. f (x) = x4 − 2x2 + 1

18. f (x) = x5 − 4x3 + x − 1

19. f (x) = 4x

x + 2
20. f (x) = x − 2

x2 − x − 2
21. f (x) = sin 3x 22. f (x) = tan 4x

23. f (x) = sin x + 2 cos x 24. f (x) = sec 2x

25. f (x) = 4e2x 26. f (x) = 3e−4x

27. f (x) = ln 3x 28. f (x) = eln 2x

29. Determine all intercepts of y = x2 + 2x − 8 (see exercise 15).

30. Determine all intercepts of y = x4 − 2x2 + 1 (see exercise 17).

31. Find all vertical asymptotes of y = 4x

x + 2
.

32. Find all vertical asymptotes of y = x − 2

x2 − x − 2
.

In exercises 33–36, find or estimate all zeros of the given
function.

33. f (x) = x2 − 3x − 10 34. f (x) = x3 + 4x2 + 3x

35. f (x) = x3 − 3x2 + 2 36. f (x) = x4 − 3x − 2

In exercises 37 and 38, determine the number of solutions.

37. sin x = x3 38.
√

x2 + 1 = x2 − 1

39. A surveyor stands 50 feet from a telephone pole and measures
an angle of 34◦ to the top. How tall is the pole?

40. Find sin θ given that 0 < θ < π

2 and cos θ = 1
5 .

41. Convert to fractional or root form: (a) 5−1/2 (b) 3−2.

42. Convert to exponential form: (a)
2√
x

(b)
3

x2
.

43. Rewrite ln 8 − 2 ln 2 as a single logarithm.

44. Solve the equation for x : eln 4x = 8.

In exercises 45 and 46, solve the equation for x.

45. 3e2x = 8 46. 2 ln 3x = 5.

In exercises 47 and 48, find f ◦g and g◦ f and identify their
respective domains.

47. f (x) = x2, g(x) = √
x − 1

48. f (x) = x2, g(x) = 1

x2 − 1

In exercises 49 and 50, identify functions f (x) and g(x) such
that ( f ◦g)(x) equals the given function.

49. e3x2+2 50.
√

sin x + 2

In exercises 51 and 52, complete the square and explain how
to transform the graph of y � x2 into the graph of the given
function.

51. f (x) = x2 − 4x + 1 52. f (x) = x2 + 4x + 6

In exercises 53–56, determine if the function is one-to-one. If so,
find its inverse.

53. x3 − 1 54. e−4x

55. e2x2
56. x3 − 2x + 1

In exercises 57–60, graph the inverse without solving for the
inverse.

57. x5 + 2x3 − 1 58. x3 + 5x + 2

59.
√

x3 + 4x 60. ex3+2x

In exercises 61–64, evaluate the quantity using the unit
circle.

61. sin−1 1 62. cos−1
(− 1

2

)
63. tan−1(−1) 64. csc−1(−2)

In exercises 65–68, simplify the expression using a triangle.

65. sin(sec−1 2) 66. tan(cos−1(4/5))

67. sin−1(sin(3π/4)) 68. cos−1(sin(−π/4))

In exercises 69 and 70, find all solutions of the equation.

69. sin 2x = 1 70. cos 3x = 1
2

In exercises 71–74, sketch the plane curve defined by the para-
metric equations and find a corresponding x-y equation for the
curve.

71.
{

x = −1 + 3 cos t
y = 2 + 3 sin t

72.
{

x = 2 − t
y = 1 + 3t
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73.
{

x = t2 + 1
y = t4 74.

{
x = cos t
y = cos2 t − 1

In exercises 75–78, sketch the plane curves defined by the para-
metric equations.

75.
{

x = cos 2t
y = sin 6t

76.
{

x = cos 6t
y = sin 2t

77.
{

x = cos 2t cos t
y = cos 2t sin t

78.
{

x = cos 2t cos 3t
y = cos 2t sin 3t

In exercises 79–82, match the parametric equations with the
corresponding plane curve.

79.
{

x = t2 − 1
y = t3 80.

{
x = t3

y = t2 − 1

81.
{

x = cos 2t cos t
y = cos 2t sin t

82.
{

x = cos(t + cos t)
y = cos(t + sin t)

y

x
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In exercises 83 and 84, find parametric equations for the given
curve.

83. The line segment from (2, 1) to (4, 7)

84. The portion of the parabola y = x2 + 1 from (1, 2) to (3, 10)

In exercises 85 and 86, sketch the graph of the polar equation
and find a corresponding x-y equation.

85. r = 3 cos θ 86. r = 2 sec θ

In exercises 87–94, sketch the graph and identify all values of θ
where r � 0 and a range of values of θ that produces one copy
of the graph.

87. r = 2 sin θ 88. r = 2 − 2 sin θ

89. r = 2 − 3 sin θ 90. r = cos 3θ + sin 2θ

91. r 2 = 4 sin 2θ 92. r = ecos θ − 2 cos 4θ

93. r = 2

1 + 2 sin θ
94. r = 2

1 + 2 cos θ

In exercises 95 and 96, find a polar equation corresponding to
the rectangular equation.

95. x2 + y2 = 9 96. (x − 3)2 + y2 = 9

CONNECTIONS

1. Sketch a graph of any function y = f (x) that has an in-
verse. (Your choice.) Sketch the graph of the inverse function
y = f −1(x). Then sketch the graph of y = g(x) = f (x + 2).
Sketch the graph of y = g−1(x) and use the graph to deter-
mine a formula for g−1(x) in terms of f −1(x). Repeat this for
h(x) = f (x) + 3 and k(x) = f (x − 4) + 5.

2. In tennis, a serve must clear the net and then land inside of a
box drawn on the other side of the net. In this exercise, you
will explore the margin of error for successfully serving. First,
consider a straight serve (this essentially means a serve hit
infinitely hard) struck 9 feet above the ground. Call the start-
ing point (0, 9). The back of the service box is 60 feet away,
at (60, 0). The top of the net is 3 feet above the ground and
39 feet from the server, at (39, 3). Find the service angle θ

(i.e., the angle as measured from the horizontal) for the trian-
gle formed by the points (0, 9), (0, 0) and (60, 0). Of course,
most serves curve down due to gravity. Ignoring air resistance,
the path of the ball struck at angle θ and initial speed v ft/s

is y = − 16

(v cos θ )2
x2 − (tan θ )x + 9. To hit the back of the

service line, you need y = 0 when x = 60. Substitute in these
values along with v = 120. Multiply by cos2 θ and replace
sin θ with

√
1 − cos2 θ . Replacing cos θ with z gives you an

algebraic equation in z. Numerically estimate z. Similarly, sub-
stitute x = 39 and y = 3 and find an equation for w = cos θ .
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Numerically estimate w. The margin of error for the serve is
given by cos−1 z < θ < cos−1 w.

9

60
3

u

3. Baseball players often say that an unusually fast pitch rises or
even hops up as it reaches the plate. One explanation of this il-
lusion involves the players’ inability to track the ball all the way
to the plate. The player must compensate by predicting where

the ball will be when it reaches the plate. Suppose the height of
a pitch when it reaches home plate is h = −(240/v)2 + 6 feet
for a pitch with velocity v ft/s. (This equation takes into con-
sideration gravity but not air resistance.) Halfway to the plate,
the height would be h = −(120/v)2 + 6 feet. Compare the
halfway heights for pitches with v = 132 and v = 139 (about
90 and 95 mph, respectively). Would a batter be able to tell
much difference between them? Now compare the heights
at the plate. Why might the batter think that the faster pitch
hopped up right at the plate? How many inches did the faster
pitch hop?


