1. (a) Let $f(x)=\left\{\begin{array}{ll}c x-2 & \text { for } x \leq c ; \\ x^{2}+2 x & \text { for } x>c\end{array}\right.$ Find c such that $f(x)$ is continuous.
(b) Compute (without the use of L'Hopital's rule)

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+9}-3}{x}
$$

2. Find the derivatives of the following functions. It is not necessary to simplify your answer:
(a)

$$
f(x)=\sqrt{\frac{(3 x+1)^{2}(5 x-1)^{3}}{(5 x+2)^{4}}}
$$

(b)

$$
g(x)=x^{4 x}
$$

(c)

$$
G(x)=\int_{x^{3}}^{2 x} \sqrt{1+t^{4}} d t
$$

3. Compute (a)

$$
\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{4 x^{2}}
$$

(b)

$$
\lim _{x \rightarrow 0^{+}}(1+\sin x)^{1 / x}
$$

4. () Find the asymptotes of

$$
f(x)=\frac{(x-2)^{2}}{x^{2}-4}
$$

5. An automobile dealer is selling cars at a price of $\$ 16,000$. The demand function is $D(p)=0.001 p(30-0.001 p)$, for $0<p<30000$, where p is the price of a car. Should the dealer raise or lower the price to increase the revenue? What price will give the dealer maximum revenue?
6. Evaluate the given integral
(a)

$$
\int x(x+999)^{7} d x
$$

(b)

$$
\int \frac{\sec ^{2} \theta}{\tan ^{2} \theta-\tan \theta-6} d \theta
$$

(c)

$$
\int \sec ^{3} t d t
$$

(d)

$$
\int_{-1}^{1} x^{-1 / 3} d x
$$

7. Let a curve Γ be defined by: $\Gamma: y=\sqrt{4-4 x^{2}}, x \in[-1,1]$
(a) Set up a definite integral for the arc length of Γ.
(b) Set up a definite integral for the surface area generated by revolving Γ about x-axis.
8. Solve the IVP, explicitly, if possible $y^{\prime}=\frac{x-1}{y}, y(0)=-2$.
9. The plot here shows the relationship between the specific partial pressure of oxygen (pO 2 , measured in mm Hg) and the saturation level of hemoglobin ($\mathrm{y}=1$ would mean that no more oxygen can bind). Determine whether $f_{1}(x)=x /(27+x)$ or $f_{2}(x)=x^{3} /\left(27^{3}+x^{3}\right)$ is a better model for this data by finding extrema, inflection points and asymptotes (for $x>0$) for each function and comparing to the graph.

