Name:
Student ID number: \qquad
TA/classroom:
Guidelines for the test:

- Put your name or student ID number on every page.
- There are 11 problems
- The exam is closed book; calculators are not allowed.
- There is no partial credit for problem 1-3.
- For other problems, please show all work, unless instructed otherwise. Partial credit will be given only for work shown. Print as legibly as possible - correct answers may have points taken off, if they're illegible.
- Mark the final answer.

TA/classroom:

1. (2 pts each) $f(x)$ is a continuous function on $(-\infty, \infty)$ and the graph of its derivative, $f^{\prime}(x)$, is shown in the figure below.
(Note: $\lim _{x \rightarrow-\infty} f^{\prime}(x)=0 ; \lim _{x \rightarrow \infty} f^{\prime}(x)=\infty$)

Answer the following True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).

- $(1, f(1))$ is an inflection point.
- $\quad f$ has a local maximum at $x=-1$
- ___ f has a local minimum at $x=1$
- ___f(x) has 3 critical numbers.

2. (2 pts each) Suppose $f(x)$ is a continuous function, and $F(x)$ is an antiderivative function of $f(x)$, i.e., $F^{\prime}(x)=f(x)$. Answer the following True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).
If $f(x)$ is an odd function, then $F(x)$ is an even function.

If $f(x)$ is an even function, then $F(x)$ is an odd function.

- \qquad If $f(x)$ is a periodic function, then $F(x)$ is a periodic function.
- ___ If $f(x)$ is monotonically increasing, then $F(x)$ is monotonically increasing.

Note:

- The graph of an even function is symmetric with respect to the y-axis.
- The graph of an odd function is symmetric with respect to the origin.
- A function f is called monotonic increasing, if for all x and y such that $x \leq y$ one has $f(x) \leq f(y)$.

3. (2 pts each) Answer the True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).

- $\quad 2-\cos x$ is an antiderivative function of $\sin x$.
- ___ $2 \sin ^{2} \frac{x}{2}$ is an antiderivative function of $\sin x$.

4. Evaluate each of the following limits.
(a) (5 pts) $\lim _{x \rightarrow 0^{+}} \sin x \ln x$
(b) (5 pts) $\lim _{x \rightarrow 0^{+}} x^{\sin x}$
5. Find $\frac{d y}{d x}$ for each of the following.
(a) (5 pts) $y=x^{\sin x}, x>0$.
(b) (5 pts) $y=e^{2 x} \frac{\sqrt{x+1}}{x^{2}+2}(2 x+1)^{5}, \quad x>0$.
6. (10 pts) Given that $F(x)=\int_{1}^{x^{2}} e^{t^{2}} d t$, for $x \geq 0$,
(a) Find $F^{\prime}(x)$
(b) Find $\left(F^{-1}\right)^{\prime}(0)$
7. Evaluate the given integral
(a) (5 pts) $\int e^{2 x} \sin x d x$.
(b) (5 pts) $\int \frac{\sqrt{\ln x}}{x} d x$,
(c) $(5 \mathrm{pts}) \int \frac{3 x}{(x+1)(x-4)} d x$,
8. (10 pts) Evaluate the definite integrals $\int_{1}^{4} e^{\sqrt{x}} d x$
9. (a) (5 pts) Evaluate $\int \cos ^{2} \theta d \theta$.
(b) (5 pts) Use the trigonometric substitution to evaluate $\int_{0}^{1} \sqrt{1-x^{2}} d x$,
10. (5 pts) Use formulas for indefinite integrals to evaluate $\int \frac{1}{x^{2}-4 x+5} d x$.
11. Evaluate the given integral
(a) $(5 \mathrm{pts}) \int_{-1}^{1} x^{-2} d x$
(b) $(5 \mathrm{pts}) \int_{-\infty}^{\infty} x d x$
