Guidelines for the test:

- Put your name or student ID number on every page.
- There are 11 problems
- The exam is closed book; calculators are not allowed.
- There is no partial credit for problem 1-3.
- For other problems,

please show all work, unless instructed otherwise. Partial credit will be given only for work shown. Print as legibly as possible - correct answers may have points taken off, if they're illegible.

- Mark the final answer.
- 1. (2 pts each) f(x) is a **continuous** function on $(-\infty, \infty)$ and the graph of its **derivative**, f'(x), is shown in the figure below.

(Note: $\lim_{x \to -\infty} f'(x) = 0$; $\lim_{x \to \infty} f'(x) = \infty$)

Answer the following True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).

- _ \times (1, f(1)) is an inflection point.
- \bigcirc f has a local maximum at x = -1.
- _____ f has a local minimum at x = 1.
- \times f(x) has 3 critical numbers.
- Sol. ① Since the slope of f'(x) at x = 1 is not zero, $f''(x) \neq 0$.
 - (2) f'(-1) = 0 with f''(-1) < 0.
 - (3) f'(1) = 0 with f''(1) < 0. The point x = 1 should be a local maximum point of f(x).

- (4) f'(-1) = f'(1) = f'(3) = 0, f'(0) does not exist. There are 4 critical number of f(x).
- 2. (2 pts each) Suppose f(x) is a continuous function, and F(x) is an antiderivative function of f(x), i.e., F'(x) = f(x). Answer the following True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).
 - \bigcirc If f(x) is an odd function, then F(x) is an even function.
 - _____ If f(x) is an even function, then F(x) is an odd function.
 - ____ If f(x) is a periodic function, then F(x) is a periodic function.
 - \times If f(x) is monotonically increasing, then F(x) is monotonically increasing.

Note:

- The graph of an even function is symmetric with respect to the y-axis.
- The graph of an odd function is symmetric with respect to the origin.
- A function f is called monotonic increasing, if for all x and y such that $x \leq y$ one has $f(x) \leq f(y)$.

Sol. ① Let
$$G(x) = \int_0^x f(t)dt$$
 be an antiderivative function of $f(x)$, then
 $G(-x) = \int_0^{-x} f(t)dt$. By letting $u = -t$, $du = -dt$, we have
 $G(-x) = \int_0^{-x} f(t)dt$
 $= \int_0^x - f(-u)du$
 $= \int_0^x f(u)du$ (since $f(x)$ is an odd function)
 $= G(x)$.

Thus, G(x) is an even function. By the fact that the difference of F(x) and G(x) is constant, we can conclude that any antiderivative of f(x) is an even function.

- (2) Choose $f(x) = x^2$ and $F(x) = \frac{1}{3}x^3 + 1$. We can check that $f(-x) = f(x), \ \forall x \in \mathbb{R}, \ \text{but } F(-x) \neq -F(x).$
- ③ Choose $f(x) = 1 + \cos x$ and $F(x) = x + \sin x$, the statement is false.
- (4) Choose f(x) = x and $F(x) = \frac{1}{2}x^2, x \in \mathbb{R}$. We can check that f(x) is strictly increasing on \mathbb{R} , but F(x) is not.
- 3. (2 pts each) Answer the True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).
 - _____ $2 \cos x$ is an antiderivative function of $\sin x$.

• _____
$$2\sin^2\frac{x}{2}$$
 is an antiderivative function of $\sin x$.

Sol. (1)
$$\frac{d}{dx}(2-\cos x) = \sin x$$
.
(2) $\frac{d}{dx}(2\sin^2 \frac{x}{2}) = \frac{d}{dx}(2\cdot \frac{1-\cos x}{2}) = \frac{d}{dx}(1-\cos x) = \sin x$.

- 4. Evaluate each of the following limits.
 - (a) (5 pts) $\lim_{x \to 0^+} \sin x \ln x$.

Sol. $\lim_{x\to 0^+} \sin x \ln x = \lim_{x\to 0^+} \frac{\ln x}{\csc x}$. This limit is of $\frac{\infty}{\infty}$ form, by L' Hospital rule,

$$\lim_{x \to 0^+} \frac{\ln x}{\csc x} = \lim_{x \to 0^+} \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (\csc x)}$$
$$= \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\csc x \cot x}$$
$$= -\lim_{x \to 0^+} \left(\frac{\sin x}{x} \cdot \tan x\right)$$
$$= -\left(\lim_{x \to 0^+} \frac{\sin x}{x}\right) \left(\lim_{x \to 0^+} \tan x\right)$$
$$= -1 \cdot 0$$
$$= 0.$$

(b) (5 pts) $\lim_{x \to 0^+} x^{\sin x}$.

Sol. Let $y(x) = x^{\sin x}$, we have $\ln y(x) = \sin x \ln x$. By (a), we have $\lim_{x \to 0^+} \ln y(x) = \lim_{x \to 0^+} \sin x \ln x = 0$. Thus,

$$\lim_{x \to 0^+} x^{\sin x} = \lim_{x \to 0^+} y(x)$$

=
$$\lim_{x \to 0^+} e^{\ln y(x)}$$

=
$$e^{\left(\lim_{x \to 0^+} \ln y(x)\right)}$$
 (by the continuity of e^x)
=
$$e^0$$

= 1.

- 5. Find $\frac{dy}{dx}$ for each of the following.
 - (a) (5 pts) $y = x^{\sin x}, x > 0.$

Sol. First we have $\ln y(x) = \ln (x^{\sin x}) = \sin x \ln x$. Then,

$$\begin{array}{l} \left(\ln y(x) \right) &= \frac{d}{dx} \left(\sin x \ln x \right) \\ \Rightarrow \quad \frac{1}{y(x)} \cdot \left(\frac{d}{dx} y(x) \right) &= \left(\frac{d}{dx} \sin x \right) \cdot \ln x + \sin x \cdot \left(\frac{d}{dx} \ln x \right) \\ \Rightarrow \quad \frac{1}{y(x)} \left(\frac{d}{dx} y(x) \right) &= \cos x \ln x + \frac{\sin x}{x} \\ \Rightarrow \quad \frac{d}{dx} y(x) &= y(x) \cdot \left(\cos x \ln x + \frac{\sin x}{x} \right) = x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right) . \end{aligned}$$

$$(b) \ (5 \text{ pts}) \ y &= e^{2x} \frac{\sqrt{x+1}}{x^2+2} (2x+1)^5, \quad x > 0.$$

Sol. First we have
$$\ln y(x) = \ln \left[e^{2x} \frac{\sqrt{x+1}}{x^2+2} (2x+1)^5 \right] = \ln e^{2x} + \ln \sqrt{x+1} - \ln (x^2+2) + \ln (2x+1)^5 = 2x + \frac{1}{2} \ln (x+1) - \ln (x^2+2) + 5 \ln (2x+1).$$

Then,

$$\frac{d}{dx} (\ln y(x)) = \frac{d}{dx} \left[2x + \frac{1}{2} \ln (x+1) - \ln (x^2+2) + 5 \ln (2x+1) \right] \\ \Longrightarrow \frac{1}{y(x)} \cdot \left(\frac{d}{dx} y(x) \right) = \left[2 + \frac{1}{2} \cdot \frac{1}{x+1} - \frac{1}{x^2+2} \cdot \left(\frac{d}{dx} (x^2+2) \right) + 5 \cdot \frac{1}{2x+1} \cdot \left(\frac{d}{dx} (2x+1) \right) \right] \\ \Longrightarrow \frac{1}{y(x)} \left(\frac{d}{dx} y(x) \right) = 2 + \frac{1}{2x+2} - \frac{2x}{x^2+2} + \frac{10}{2x+1} \\ \Longrightarrow \frac{d}{dx} y(x) = y(x) \cdot \left(2 + \frac{1}{2x+2} - \frac{2x}{x^2+2} + \frac{10}{2x+1} \right) \\ = \left[e^{2x} \frac{\sqrt{x+1}}{x^2+2} (2x+1)^5 \right] \left(2 + \frac{1}{2x+2} - \frac{2x}{x^2+2} + \frac{10}{2x+1} \right).$$

6. (10 pts) Given that $F(x) = \int_{1}^{x^{2}} e^{t^{2}} dt$, for $x \ge 0$.

(a) Find F'(x).

Sol. By Fundamental Theorem of Calculus, $F'(x) = e^{(x^2)^2} \cdot (\frac{d}{dx}x^2) = 2xe^{x^4}$. (b) Find $(F^{-1})'(0)$.

Sol. Since F(1) = 0, we have $F^{-1}(0) = 1$. Hence,

$$(F^{-1})'(0) = \frac{1}{F'(F^{-1}(0))} = \frac{1}{2F^{-1}(0)e^{(F^{-1}(0))^4}} = \frac{1}{2e}$$

- 7. Evaluate the given integral.
 - (a) (5 pts) $\int e^{2x} \sin x dx$. Sol. $\int e^{2x} \sin x dx = \frac{1}{2} e^{2x} \sin x - \int \frac{1}{2} e^{2x} \cos x dx \quad \text{(by integration by parts)}$ $= \frac{1}{2} e^{2x} \sin x - \left(\frac{1}{4} e^{2x} \cos x + \int \frac{1}{4} e^{2x} \sin x dx\right) \quad \text{(by integration by parts)}$

$$= \frac{1}{2}e^{2x}\sin x - \frac{1}{4}e^{2x}\cos x - \frac{1}{4}\int e^{2x}\sin x dx.$$
We have $\frac{5}{4}\int e^{2x}\sin x dx = \frac{1}{2}e^{2x}\sin x - \frac{1}{4}e^{2x}\cos x + C_1$. Thus, $\int e^{2x}\sin x dx = \frac{4}{5}\left(\frac{1}{2}e^{2x}\sin x - \frac{1}{4}e^{2x}\cos x + C_1\right) = \frac{2}{5}e^{2x}\sin x - \frac{1}{5}e^{2x}\cos x + C.$
(b) (5 pts) $\int \frac{\sqrt{\ln x}}{x}dx.$
Solution to the random of $\sqrt{\ln x}$ does a finite of $\sqrt{\ln x}$ does a finite of $\sqrt{\ln x}$ does a finite of $\sqrt{\ln x}$.

Sol. Let
$$u = \ln x$$
, $du = \frac{1}{x}dx$. Then $\int \frac{\sqrt{\ln x}}{x}dx = \int \sqrt{u}du = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}(\ln x)^{\frac{3}{2}} + C$.
(c) (5 pts) $\int \frac{3x}{(x+1)(x-4)}dx$.

Sol.
$$\int \frac{3x}{(x+1)(x-4)} dx = \int \left(\frac{\frac{3}{5}}{x+1} + \frac{\frac{12}{5}}{x-4}\right) dx = \frac{3}{5} \ln|x+1| + \frac{12}{5} \ln|x-4| + C.$$

8. (10 pts) Evaluate the definite integrals $\int_{1}^{4} e^{\sqrt{x}} dx$.

Sol. Let $u = \sqrt{x}$, $du = \frac{1}{2\sqrt{x}}dx$, which we have $dx = 2\sqrt{x}du = 2udu$. Then

$$\int_{1}^{4} e^{\sqrt{x}} dx = \int_{1}^{2} 2u e^{u} du$$

= $2u e^{u} \Big|_{1}^{2} - \int_{1}^{2} 2e^{u} du$ (by integration by parts)
= $4e^{2} - 2e - \left(2e^{u} \Big|_{1}^{2}\right)$
= $4e^{2} - 2e - (2e^{2} - 2e)$
= $2e^{2}$.

9. (a) (5 pts) Evaluate $\int \cos^2 \theta d\theta$. **Sol.** $\int \cos^2 \theta d\theta = \int \frac{1 + \cos 2\theta}{2} d\theta = \frac{\theta}{2} + \frac{\sin 2\theta}{4} + C.$

(b) (5 pts) Use the trigonometric substitution to evaluate $\int_0^1 \sqrt{1-x^2} dx$. Sol. Let $x = \sin \theta$, $dx = \cos \theta d\theta$. Then

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} \theta} \cdot \cos \theta d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \cos \theta \cdot \cos \theta d\theta$$
$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} \theta d\theta.$$

By (a), we have

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4}\right) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

10. (5 pts) Use formulas for indefinite integrals to evaluate $\int \frac{1}{x^2 - 4x + 5} dx$.

Sol. Set a = 1, b = -4, c = 5, then $b^2 - 4ac = 16 - 20 = -4 < 0$. By using the integral formula

$$\int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}},$$

we have
$$\int \frac{1}{x^2 - 4x + 5} dx = \frac{2}{\sqrt{4}} \tan^{-1} \frac{2x - 4}{\sqrt{4}} + C = \tan^{-1} (x - 2) + C$$

11. Evaluate the given integral.