Name: \qquad
Student ID number: \qquad
TA/classroom: \qquad

Guidelines for the test:

- Put your name or student ID number on every page.
- There are 11 problems
- The exam is closed book; calculators are not allowed.
- There is no partial credit for problem 1-3.
- For other problems,
please show all work, unless instructed otherwise. Partial credit will be given only for work shown. Print as legibly as possible - correct answers may have points taken off, if they're illegible.
- Mark the final answer.

1. (2 pts each) $f(x)$ is a continuous function on $(-\infty, \infty)$ and the graph of its derivative, $f^{\prime}(x)$, is shown in the figure below.
(Note: $\lim _{x \rightarrow-\infty} f^{\prime}(x)=0 ; \lim _{x \rightarrow \infty} f^{\prime}(x)=\infty$)

Answer the following True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).

- $\times(1, f(1))$ is an inflection point.
- $\bigcirc f$ has a local maximum at $x=-1$.
- $\times f$ has a local minimum at $x=1$.
- $\times f(x)$ has 3 critical numbers.

Sol. (1) Since the slope of $f^{\prime}(x)$ at $x=1$ is not zero, $f^{\prime \prime}(x) \neq 0$.
(2) $f^{\prime}(-1)=0$ with $f^{\prime \prime}(-1)<0$.
(3) $f^{\prime}(1)=0$ with $f^{\prime \prime}(1)<0$. The point $x=1$ should be a local maximum point of $f(x)$.
(4) $f^{\prime}(-1)=f^{\prime}(1)=f^{\prime}(3)=0, f^{\prime}(0)$ does not exist. There are 4 critical number of $f(x)$.
2. (2 pts each) Suppose $f(x)$ is a continuous function, and $F(x)$ is an antiderivative function of $f(x)$, i.e., $F^{\prime}(x)=f(x)$. Answer the following True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).

- \bigcirc If $f(x)$ is an odd function, then $F(x)$ is an even function.
- $\quad \times$ If $f(x)$ is an even function, then $F(x)$ is an odd function.
- $\quad \times$ If $f(x)$ is a periodic function, then $F(x)$ is a periodic function.
- $\quad \times$ If $f(x)$ is monotonically increasing, then $F(x)$ is monotonically increasing.

Note:

- The graph of an even function is symmetric with respect to the y-axis.
- The graph of an odd function is symmetric with respect to the origin.
- A function f is called monotonic increasing, if for all x and y such that $x \leq y$ one has $f(x) \leq f(y)$.

Sol. (1) Let $G(x)=\int_{0}^{x} f(t) d t$ be an antiderivative function of $f(x)$, then

$$
\begin{aligned}
& G(-x)=\int_{0}^{-x} f(t) d t . \text { By letting } u=-t, d u=-d t, \text { we have } \\
& G(-x) \\
& =\int_{0}^{-x} f(t) d t \\
& \\
& =\int_{0}^{x}-f(-u) d u \\
& \\
& =\int_{0}^{x} f(u) d u \text { (since } f(x) \text { is an odd function) } \\
& \\
& =G(x)
\end{aligned}
$$

Thus, $G(x)$ is an even function. By the fact that the difference of $F(x)$ and $G(x)$ is constant, we can conclude that any antiderivative of $f(x)$ is an even function.
(2) Choose $f(x)=x^{2}$ and $F(x)=\frac{1}{3} x^{3}+1$. We can check that $f(-x)=$ $f(x), \forall x \in \mathbb{R}$, but $F(-x) \neq-F(x)$.
(3) Choose $f(x)=1+\cos x$ and $F(x)=x+\sin x$, the statement is false.
(4) Choose $f(x)=x$ and $F(x)=\frac{1}{2} x^{2}, x \in \mathbb{R}$. We can check that $f(x)$ is strictly increasing on \mathbb{R}, but $F(x)$ is not.
3. (2 pts each) Answer the True/False questions (True $\Rightarrow \bigcirc$; False $\Rightarrow \times$).

- $\bigcirc 2-\cos x$ is an antiderivative function of $\sin x$.
- $\bigcirc 2 \sin ^{2} \frac{x}{2}$ is an antiderivative function of $\sin x$.

Sol. (1) $\frac{d}{d x}(2-\cos x)=\sin x$.
(2) $\frac{d}{d x}\left(2 \sin ^{2} \frac{x}{2}\right)=\frac{d}{d x}\left(2 \cdot \frac{1-\cos x}{2}\right)=\frac{d}{d x}(1-\cos x)=\sin x$.
4. Evaluate each of the following limits.
(a) (5 pts) $\lim _{x \rightarrow 0^{+}} \sin x \ln x$.

Sol. $\lim _{x \rightarrow 0^{+}} \sin x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}$. This limit is of $\frac{\infty}{\infty}$ form, by L' Hospital rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x} & \stackrel{\mathbf{L}}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}(\ln x)}{\frac{d}{d x}(\csc x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x} \\
& =-\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x}{x} \cdot \tan x\right) \\
& =-\left(\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}\right)\left(\lim _{x \rightarrow 0^{+}} \tan x\right) \\
& =-1 \cdot 0 \\
& =0
\end{aligned}
$$

(b) (5 pts) $\lim _{x \rightarrow 0^{+}} x^{\sin x}$.

Sol. Let $y(x)=x^{\sin x}$, we have $\ln y(x)=\sin x \ln x$. By (a), we have $\lim _{x \rightarrow 0^{+}} \ln y(x)=\lim _{x \rightarrow 0^{+}} \sin x \ln x=0$. Thus,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{\sin x} & =\lim _{x \rightarrow 0^{+}} y(x) \\
& =\lim _{x \rightarrow 0^{+}} e^{\ln y(x)} \\
& \left.\left.=e^{\left(\lim _{x \rightarrow 0^{+}} \ln y(x)\right.}\right) \quad \text { (by the continuity of } e^{x}\right) \\
& =e^{0} \\
& =1
\end{aligned}
$$

5. Find $\frac{d y}{d x}$ for each of the following.
(a) (5 pts) $y=x^{\sin x}, x>0$.

Sol. First we have $\ln y(x)=\ln \left(x^{\sin x}\right)=\sin x \ln x$. Then,

$$
\begin{aligned}
& \frac{d}{d x}(\ln y(x))=\frac{d}{d x}(\sin x \ln x) \\
\Longrightarrow & \frac{1}{y(x)} \cdot\left(\frac{d}{d x} y(x)\right)=\left(\frac{d}{d x} \sin x\right) \cdot \ln x+\sin x \cdot\left(\frac{d}{d x} \ln x\right) \\
\Longrightarrow & \frac{1}{y(x)}\left(\frac{d}{d x} y(x)\right)=\cos x \ln x+\frac{\sin x}{x} \\
\Longrightarrow & \frac{d}{d x} y(x)=y(x) \cdot\left(\cos x \ln x+\frac{\sin x}{x}\right)=x^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right) .
\end{aligned}
$$

(b) $(5 \mathrm{pts}) y=e^{2 x} \frac{\sqrt{x+1}}{x^{2}+2}(2 x+1)^{5}, \quad x>0$.

Sol. First we have $\ln y(x)=\ln \left[e^{2 x} \frac{\sqrt{x+1}}{x^{2}+2}(2 x+1)^{5}\right]=\ln e^{2 x}+\ln \sqrt{x+1}-$ $\ln \left(x^{2}+2\right)+\ln (2 x+1)^{5}=2 x+\frac{1}{2} \ln (x+1)-\ln \left(x^{2}+2\right)+5 \ln (2 x+1)$. Then,

$$
\begin{aligned}
& \frac{d}{d x}(\ln y(x))=\frac{d}{d x}\left[2 x+\frac{1}{2} \ln (x+1)-\ln \left(x^{2}+2\right)+5 \ln (2 x+1)\right] \\
& \Longrightarrow \frac{1}{y(x)} \cdot\left(\frac{d}{d x} y(x)\right)=\left[2+\frac{1}{2} \cdot \frac{1}{x+1}-\frac{1}{x^{2}+2} \cdot\left(\frac{d}{d x}\left(x^{2}+2\right)\right)+5 \cdot \frac{1}{2 x+1} \cdot\left(\frac{d}{d x}(2 x+1)\right)\right] \\
& \Longrightarrow \frac{1}{y(x)}\left(\frac{d}{d x} y(x)\right)=2+\frac{1}{2 x+2}-\frac{2 x}{x^{2}+2}+\frac{10}{2 x+1} \\
& \Longrightarrow \frac{d}{d x} y(x)=y(x) \cdot\left(2+\frac{1}{2 x+2}-\frac{2 x}{x^{2}+2}+\frac{10}{2 x+1}\right) \\
& \left.\quad=\left[e^{2 x} \frac{\sqrt{x+1}}{x^{2}+2}(2 x+1)^{5}\right]^{\left(2+\frac{1}{2 x+2}\right.}-\frac{2 x}{x^{2}+2}+\frac{10}{2 x+1}\right) .
\end{aligned}
$$

6. (10 pts) Given that $F(x)=\int_{1}^{x^{2}} e^{t^{2}} d t$, for $x \geq 0$.
(a) Find $F^{\prime}(x)$.

Sol. By Fundamental Theorem of Calculus, $F^{\prime}(x)=e^{\left(x^{2}\right)^{2}} \cdot\left(\frac{d}{d x} x^{2}\right)=2 x e^{x^{4}}$.
(b) Find $\left(F^{-1}\right)^{\prime}(0)$.

Sol. Since $F(1)=0$, we have $F^{-1}(0)=1$. Hence,

$$
\left(F^{-1}\right)^{\prime}(0)=\frac{1}{F^{\prime}\left(F^{-1}(0)\right)}=\frac{1}{2 F^{-1}(0) e^{\left(F^{-1}(0)\right)^{4}}}=\frac{1}{2 e}
$$

7. Evaluate the given integral.
(a) $(5 \mathrm{pts}) \int e^{2 x} \sin x d x$.

Sol.

$$
\begin{aligned}
\int e^{2 x} \sin x d x & =\frac{1}{2} e^{2 x} \sin x-\int \frac{1}{2} e^{2 x} \cos x d x \quad \text { (by integration by parts) } \\
& =\frac{1}{2} e^{2 x} \sin x-\left(\frac{1}{4} e^{2 x} \cos x+\int \frac{1}{4} e^{2 x} \sin x d x\right) \quad \text { (by integration by parts) } \\
& =\frac{1}{2} e^{2 x} \sin x-\frac{1}{4} e^{2 x} \cos x-\frac{1}{4} \int e^{2 x} \sin x d x
\end{aligned}
$$

We have $\frac{5}{4} \int e^{2 x} \sin x d x=\frac{1}{2} e^{2 x} \sin x-\frac{1}{4} e^{2 x} \cos x+C_{1}$. Thus, $\int e^{2 x} \sin x d x=$

$$
\frac{4}{5}\left(\frac{1}{2} e^{2 x} \sin x-\frac{1}{4} e^{2 x} \cos x+C_{1}\right)=\frac{2}{5} e^{2 x} \sin x-\frac{1}{5} e^{2 x} \cos x+C .
$$

(b) $(5 \mathrm{pts}) \int \frac{\sqrt{\ln x}}{x} d x$.

Sol. Let $u=\ln x, d u=\frac{1}{x} d x$. Then $\int \frac{\sqrt{\ln x}}{x} d x=\int \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}+C=$

$$
\frac{2}{3}(\ln x)^{\frac{3}{2}}+C .
$$

(c) $(5 \mathrm{pts}) \int \frac{3 x}{(x+1)(x-4)} d x$.

Sol. $\left.\int \frac{3 x}{(x+1)(x-4)} d x=\int\left(\frac{\frac{3}{5}}{x+1}+\frac{\frac{12}{5}}{x-4}\right) d x=\frac{3}{5} \ln |x+1|+\frac{12}{5} \ln \right\rvert\, x-$ $4 \mid+C$.
8. (10 pts) Evaluate the definite integrals $\int_{1}^{4} e^{\sqrt{x}} d x$.

Sol. Let $u=\sqrt{x}, d u=\frac{1}{2 \sqrt{x}} d x$, which we have $d x=2 \sqrt{x} d u=2 u d u$. Then

$$
\begin{aligned}
\int_{1}^{4} e^{\sqrt{x}} d x & =\int_{1}^{2} 2 u e^{u} d u \\
& =\left.2 u e^{u}\right|_{1} ^{2}-\int_{1}^{2} 2 e^{u} d u \quad(\text { by integration by parts) } \\
& =4 e^{2}-2 e-\left(\left.2 e^{u}\right|_{1} ^{2}\right) \\
& =4 e^{2}-2 e-\left(2 e^{2}-2 e\right) \\
& =2 e^{2}
\end{aligned}
$$

9. (a) (5 pts) Evaluate $\int \cos ^{2} \theta d \theta$.

Sol. $\int \cos ^{2} \theta d \theta=\int \frac{1+\cos 2 \theta}{2} d \theta=\frac{\theta}{2}+\frac{\sin 2 \theta}{4}+C$.
(b) (5 pts) Use the trigonometric substitution to evaluate $\int_{0}^{1} \sqrt{1-x^{2}} d x$.

Sol. Let $x=\sin \theta, d x=\cos \theta d \theta$. Then

$$
\begin{aligned}
\int_{0}^{1} \sqrt{1-x^{2}} d x & =\int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin ^{2} \theta} \cdot \cos \theta d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \cos \theta \cdot \cos \theta d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta
\end{aligned}
$$

By (a), we have

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x=\left.\left(\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right)\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi}{4}
$$

10. (5 pts) Use formulas for indefinite integrals to evaluate $\int \frac{1}{x^{2}-4 x+5} d x$.

Sol. Set $a=1, b=-4, c=5$, then $b^{2}-4 a c=16-20=-4<0$. By using the integral formula

$$
\int \frac{1}{a x^{2}+b x+c} d x=\frac{2}{\sqrt{4 a c-b^{2}}} \tan ^{-1} \frac{2 a x+b}{\sqrt{4 a c-b^{2}}}
$$

we have $\int \frac{1}{x^{2}-4 x+5} d x=\frac{2}{\sqrt{4}} \tan ^{-1} \frac{2 x-4}{\sqrt{4}}+C=\tan ^{-1}(x-2)+C$.
11. Evaluate the given integral.
(a) (5 pts) $\int_{-1}^{1} x^{-2} d x$.

Sol. Since $\int_{0}^{1} x^{-2} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{-2} d x=\left.\lim _{t \rightarrow 0^{+}}\left(-\frac{1}{x}\right)\right|_{t} ^{1}=\lim _{t \rightarrow 0^{+}}\left(-1+\frac{1}{t}\right)=$ ∞, the integral $\int_{0}^{1} x^{-2} d x$ diverges. Hence, the integral $\int_{-1}^{1} x^{-2} d x$ diverges.
(b) $(5 \mathrm{pts}) \int_{-\infty}^{\infty} x d x$.

Sol. Since $\int_{0}^{\infty} x d x=\lim _{t \rightarrow+\infty} \int_{0}^{t} x d x=\left.\lim _{t \rightarrow+\infty} \frac{1}{2} x^{2}\right|_{0} ^{t}=\lim _{t \rightarrow+\infty} \frac{1}{2} t^{2}=+\infty$, the integral $\int_{0}^{\infty} x d x$ diverges. Hence, the integral $\int_{-\infty}^{\infty} x d x$ diverges.

