Calculus	Midterm	Version 1	Nov. 15, 2006
Name:			

Student ID number: _____

Guidelines for the test:

- Put your name or student ID number on every page.
- There are 14 problems: 10 problems in Part I and 4 problems in Part II.
- The exam is closed book; calculators are not allowed.
- There is no partial credit for the Problems in the Part I (multiple-choice (選擇) and fill-in (填充) problems).
- For problems in the Part II (calculation (計算題) problems), please show all work, unless instructed otherwise. Partial credit will be given only for work shown. Print as legibly as possible - correct answers may have points taken off, if they're illegible.
- Mark the final answer.

Calculus

Part I: (6 points for each problem) Multiple Choice (**Single Choice**)

(1) Which of the following pairs of functions are inverse functions of each other on the implied domains? A) f(x) = |x|; g(x) = |x|c) $f(x) = \frac{1}{x}; g(x) = \frac{x}{1},$ B) $f(x) = 2x - 1, g(x) = \frac{1}{2}x + 1$ D) $f(x) = \sqrt[3]{x}; g(x) = x^3$.

(2) Which of the following curves is **NOT** the graph of a function? (A) (B) (C) (D)

- (4) Given that $f(x) = \frac{x^3}{x^2-1}$, $f'(x) = \frac{x^2(x^2-3)}{(x^2-1)^2}$, f(0) = 0, $f(\sqrt{3}) = \frac{3\sqrt{3}}{2}$ and $f(-\sqrt{3}) = -\frac{3\sqrt{3}}{2}$, which one of the following is **NOT** true? A) Domain of f is $\{x \neq \pm 1\}$ B) The absolute maximum of f occurs at $x = \sqrt{3}$,
 - C) f has no absolute extremum,
 - D) f does not have a local extremum at x = 0

Calculus Student ID number: _____ (5) $\frac{d}{dx}(x^x) = ?$

A)
$$x^{x}$$
 B) $x^{x}(\ln x + 1)$, C) $x^{x}\ln x$, D) x^{x-1}

(6) Let
$$f(x) = \begin{cases} 2x - 3, & x < 2\\ 2, & x = 2\\ x^2 - 3x, & x > 2 \end{cases}$$

$$\lim_{x \to 2^-} f(x) + f(2) + 3 \lim_{x \to 2^+} f(x) = \underline{\qquad}.$$

(7) Let
$$f(x) = \begin{cases} x^3, & x < 2 \\ Ax - 2, & x \ge 2 \end{cases}$$
. Find A given that f is continuous at 2.
$$A = \underline{\qquad}$$

(8)
$$\lim_{x \to \infty} \frac{x^2}{x^2 - 1} =$$

(9)
$$\lim_{x \to 1^-} \frac{x}{x^2 - 1} =$$

(10)
$$\frac{d}{dx}(2e^{x^3}) =$$
_____.

Calculus

Part II: (10 points for each problem) Calculation Problems (**Show all work**)

(11) Compute f'(x) by definition $(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h})$. $f(x) = \sqrt{3+x}$

(12) If $x^2 + y^2 = 4$, use implicit differentiation to obtain $\frac{dy}{dx}$ in term of x and y. Find the equation of the tangent line at the point $(\sqrt{2}, \sqrt{2})$.

Calculus

Student ID number: _____

(13) Find
$$\frac{d}{dx}\left(\frac{\sqrt{x^2+4}}{x+1}\right)$$

(14) Given that $f(x) = x^3 - x$, find the critical number of f(x). Find the absolute maximum and absolute minimum values of the function f(x) on the interval [0, 2].

• Double-Angle $\sin 2\theta = 2\sin\theta\cos\theta$

$$\cos 2\theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$

- Rule of exponents For any integers m and n, $x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$ For any real p, $x^{-p} = \frac{1}{x^p}$ For any real p and q, $(x^p)^q = x^{pq}$ For any real p and q, $x^p \cdot x^q = x^{p+q}$
- properties of logarithm function For any positive base $b \neq 1$ and positive numbers x and y, we have $\log_b (xy) = \log_b x + \log_b y$ $\log_b (x^y) = y \log_b x$ $\log_b (x) = \frac{\ln x}{\ln b}$