Name： \qquad

Student ID number： \qquad

Guidelines for the test：
－Put your name or student ID number on every page．
－There are 14 problems： 10 problems in Part I and 4 problems in Part II．
－The exam is closed book；calculators are not allowed．
－There is no partial credit for the Problems in the Part I（multiple－choice （選擇）and fill－in（塤充）problems）．
－For problems in the Part II（calculation（計算題）problems），please show all work，unless instructed otherwise．Partial credit will be given only for work shown．Print as legibly as possible－correct answers may have points taken off，if they＇re illegible．
－Mark the final answer．

Calculus

Student ID number:

\qquad

Part I: (6 points for each problem) Multiple Choice (Single Choice)

(1) Which of the following pairs of functions are inverse functions of each other on the implied domains?
A) $f(x)=|x| ; g(x)=|x|$
B) $f(x)=2 x-1, g(x)=\frac{1}{2} x+1$
c) $f(x)=\frac{1}{x} ; g(x)=\frac{x}{1}$,
D) $f(x)=\sqrt[3]{x} ; g(x)=x^{3}$.
(2) Which of the following curves is NOT the graph of a function?
(A)
(B)
(C)
(D)

(3) Find the graph corresponding to the derivative of the given function?
$f(x)$
(A)
(B)
(C)

(4) Given that $f(x)=\frac{x^{3}}{x^{2}-1}, f^{\prime}(x)=\frac{x^{2}\left(x^{2}-3\right)}{\left(x^{2}-1\right)^{2}}, f(0)=0, f(\sqrt{3})=\frac{3 \sqrt{3}}{2}$ and $f(-\sqrt{3})=-\frac{3 \sqrt{3}}{2}$, which one of the following is NOT true?
A) Domain of f is $\{x \neq \pm 1\}$
B) The absolute maximum of f occurs at $x=\sqrt{3}$,
C) f has no absolute extremum,
D) f does not have a local extremum at $x=0$

Calculus

(5) $\frac{d}{d x}\left(x^{x}\right)=$?
A) x^{x}
B) $x^{x}(\ln x+1)$,
C) $x^{x} \ln x$,
D) x^{x-1}

Fill-In Problems
(6) Let $f(x)=\left\{\begin{array}{ll}2 x-3, & x<2 \\ 2, & x=2 \\ x^{2}-3 x, & x>2\end{array}\right.$.

$$
\lim _{x \rightarrow 2^{-}} f(x)+f(2)+3 \lim _{x \rightarrow 2^{+}} f(x)=
$$

\qquad
(7) Let $f(x)=\left\{\begin{array}{ll}x^{3}, & x<2 \\ A x-2, & x \geq 2\end{array}\right.$. Find A given that f is continuous at 2 . $A=$
(8) $\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}-1}=$
(9) $\lim _{x \rightarrow 1^{-}} \frac{x}{x^{2}-1}=$ \qquad
(10) $\frac{d}{d x}\left(2 e^{x^{3}}\right)=$

Calculus

Part II: (10 points for each problem)
Calculation Problems (Show all work)
(11) Compute $f^{\prime}(x)$ by definition $\left(f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)$.

$$
f(x)=\sqrt{3+x}
$$

(12) If $x^{2}+y^{2}=4$, use implicit differentiation to obtain $\frac{d y}{d x}$ in term of x and y. Find the equation of the tangent line at the point $(\sqrt{2}, \sqrt{2})$.

Calculus

Student ID number:

(13) Find $\frac{d}{d x}\left(\frac{\sqrt{x^{2}+4}}{x+1}\right)$
(14) Given that $f(x)=x^{3}-x$, find the critical number of $f(x)$. Find the absolute maximum and absolute minimum values of the function $f(x)$ on the interval $[0,2]$.

- Double-Angle

$$
\sin 2 \theta=2 \sin \theta \cos \theta \quad \cos 2 \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta
$$

- Rule of exponents

For any integers m and n,

$$
x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m} \quad \text { For any real } p, x^{-p}=\frac{1}{x^{p}}
$$

For any real p and $q,\left(x^{p}\right)^{q}=x^{p q}$

For any real p and $q, x^{p} \cdot x^{q}=x^{p+q}$

- properties of logarithm function

For any positive base $b \neq 1$ and positive numbers x and y, we have

$$
\begin{array}{ll}
\log _{b}(x y)=\log _{b} x+\log _{b} y & \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
\log _{b}\left(x^{y}\right)=y \log _{b} x & \log _{b}(x)=\frac{\ln x}{\ln b}
\end{array}
$$

- Derivative formulas

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\cos x \\
& \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, \text { for }-1<x<1 \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}, \\
& \frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}, \text { for }|x|>1 \\
& \frac{d}{d x} e^{x}=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} \cos x=-\sin x, \\
& \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} \text {, for }-1<x<1 \\
& \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1-x^{2}}, \\
& \frac{d}{d x} \csc ^{-1} x=-\frac{1}{|x| \sqrt{x^{2}-1}} \text { for }|x|>1 \\
& \frac{d}{d x} \ln x=\frac{1}{x}
\end{aligned}
$$

