Name: \qquad ID: \qquad

1. Which of the following pairs of functions are inverse functions of each other on the implied domains? (may have more than one answer)
A) $f(x)=|x| ; g(x)=|x|$
B) $f(x)=\frac{1}{x} ; g(x)=\frac{x}{1}$,
C) $f(x)=\frac{1}{x} ; g(x)=\frac{1}{x}$,
D) $f(x)=\sqrt{x} ; g(x)=x^{2}$, for $x \geq 0$.
2. Which of the following curves is NOT the graph of a function? (may have more than one answer)
(A)
(B)
(C)
(D)

A) graph A,
B) graph B,
C) graph C
D) graph D
3. Find $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$.
4. Let $f(x)=\left\{\begin{array}{rr}x^{2}, & x<1 \\ A x-2, & x \geq 1\end{array}\right.$. Find A given that f is continuout at 1 .
5. Find $\lim _{x \rightarrow 0} \frac{\tan 3 x}{2 x^{2}+5 x}$.
6. Find all discontinuities of $f(x)$. For each discontinuity that is removable, define a new function that removes the discontinuity.

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{cases}
$$

7. Find the rate of change of $y=1 /[x(x+1)]$ with respect to x at $x=2$.

Ans:: $-\frac{5}{36}$
8. Find $d y / d x$ at $x=2$ if $y=(s+3)^{2}, s=\sqrt{t-3}, t=x^{2}$.

Ans:: 16. Hint: $\frac{d y}{d x}=\frac{d y}{d s} \frac{d s}{d t} \frac{d t}{d x}$
9. If $g(x)=f\left(x^{2}+1\right)$, find $g^{\prime}(1)$ given that $f^{\prime}(2)=3$.

Ans:: 6. Hint: $g^{\prime}(x)=f^{\prime}\left(x^{2}+1\right) \cdot(2 x)$
10. Let $f(x)=\left\{\begin{array}{ll}2 x-1, & x \leq 2 \\ x^{2}-x, & x>2\end{array}\right.$. Find $\lim _{x \rightarrow 2^{-}} f(x)+f(2)+3 \lim _{x \rightarrow 2^{+}} f(x)$.
11. Using the definition of detivative (limits), compute $f^{\prime}(x)$.

$$
f(x)=\sqrt{x+2}
$$

12. Find $\frac{d^{2}}{d x^{2}}\left(x^{2} \sin 6 x\right)$
13. If $x^{2}+y^{2}=4$, use implicit differentiation to obtain $\frac{d y}{d x}$ in term of x and y.
14. Find the equation of the tangent line to the curve $x^{2}+x y+2 y^{2}=28$ at the point $(-2,-3)$.
15. Find $\frac{d}{d x}\left(\frac{\sqrt{x^{2}+1}}{x+2}\right), \frac{d}{d x}\left(3 e^{x^{2}}\right), \frac{d}{d x}\left(x^{x^{2}}\right), \frac{d}{d x}\left(\sin ^{-1} x^{2}\right)$
16. A particle is moving along the parabola $y^{2}=4(x+2)$. As it passes through the point $(7,6)$, its y-coordinate is increasing at the rate of 3 units per second. How fast is the x-coordinate changing at this instance?
17. Find the absolute maximum and absolute minimum values of the function $f(x)=\frac{x}{x^{3}+2}$ on the interval $[0,2]$.
18. Given $f(x)=\frac{x}{x^{2}-1}$, find:

- Domain of the function;
- Horizontal and Vertical Asymptotes;
- Interval of increasing and decreasing;
- Critical points and local extrema;
- Determine where the graph is concave up and concave down and locate any inflection points;
- Locate x - and y - intercepts, if any;
and draw a graph of the function showing all significant features.
- Double-Angle

$$
\sin 2 \theta=2 \sin \theta \cos \theta \quad \cos 2 \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta
$$

- Derivative formulas

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\cos x, \\
& \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, \text { for }-1<x<1 \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}, \\
& \frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}, \text { for }|x|>1 \\
& \frac{d}{d x} e^{x}=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} \cos x=-\sin x, \\
& \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} \text {, for }-1<x<1 \\
& \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1-x^{2}}, \\
& \frac{d}{d x} \csc ^{-1} x=-\frac{1}{|x| \sqrt{x^{2}-1}} \text { for }|x|>1
\end{aligned}
$$

