Name: ID:

1. Which of the following pairs of functions are inverse functions of each other on the implied domains? (may have more than one answer)

A)
$$f(x) = |x|$$
; $g(x) = |x|$
C) $f(x) = \frac{1}{x}$; $g(x) = \frac{1}{x}$,

B)
$$f(x) = \frac{1}{x}$$
; $g(x) = \frac{x}{1}$,

C)
$$f(x) = \frac{1}{x}$$
; $g(x) = \frac{1}{x}$,

B)
$$f(x) = \frac{1}{x}$$
; $g(x) = \frac{x}{1}$,
D) $f(x) = \sqrt{x}$; $g(x) = x^2$, for $x \ge 0$.

2. Which of the following curves is **NOT** the graph of a function? (may have more than one answer)

- A) graph A,
- B) graph B,
- C) graph C
- D) graph D

3. Find $\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$.

4. Let $f(x) = \begin{cases} x^2, & x < 1 \\ Ax - 2, & x > 1 \end{cases}$. Find A given that f is continuout at 1.

5. Find $\lim_{x\to 0} \frac{\tan 3x}{2x^2 + 5x}$.

6. Find all discontinuities of f(x). For each discontinuity that is removable, define a new function that removes the discontinuity.

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0\\ 2 & \text{if } x = 0 \end{cases}$$

7. Find the rate of change of y = 1/[x(x+1)] with respect to x at x = 2.

Ans:: $-\frac{5}{36}$

8. Find dy/dx at x = 2 if $y = (s+3)^2$, $s = \sqrt{t-3}$, $t = x^2$.

Ans:: 16. Hint: $\frac{dy}{dx} = \frac{dy}{ds} \frac{ds}{dt} \frac{dt}{dx}$

9. If $g(x) = f(x^2 + 1)$, find g'(1) given that f'(2) = 3.

Ans:: 6. Hint: $g'(x) = f'(x^2 + 1) \cdot (2x)$

10. Let $f(x) = \begin{cases} 2x - 1, & x \le 2 \\ x^2 - x, & x > 2 \end{cases}$. Find $\lim_{x \to 2^-} f(x) + f(2) + 3 \lim_{x \to 2^+} f(x)$.

11. Using the definition of detivative (limits), compute f'(x).

$$f(x) = \sqrt{x+2}$$

- 12. Find $\frac{d^2}{dx^2} \left(x^2 \sin 6x \right)$
- 13. If $x^2 + y^2 = 4$, use implicit differentiation to obtain $\frac{dy}{dx}$ in term of x and y.
- 14. Find the equation of the tangent line to the curve $x^2 + xy + 2y^2 = 28$ at the point (-2, -3).
- 15. Find $\frac{d}{dx} \left(\frac{\sqrt{x^2 + 1}}{x + 2} \right)$, $\frac{d}{dx} (3e^{x^2})$, $\frac{d}{dx} (x^{x^2})$, $\frac{d}{dx} (\sin^{-1} x^2)$
- 16. A particle is moving along the parabola $y^2 = 4(x+2)$. As it passes through the point (7,6), its y-coordinate is increasing at the rate of 3 units per second. How fast is the x-coordinate changing at this instance?
- 17. Find the absolute maximum and absolute minimum values of the function $f(x) = \frac{x}{x^3+2}$ on the interval [0,2].
- 18. Given $f(x) = \frac{x}{x^2 1}$, find:
 - Domain of the function;
 - Horizontal and Vertical Asymptotes;
 - Interval of increasing and decreasing;
 - Critical points and local extrema;
 - Determine where the graph is concave up and concave down and locate any inflection points;
 - Locate x- and y- intercepts, if any;

and draw a graph of the function showing all significant features.

• Double-Angle

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

• Derivative formulas

$$\begin{array}{ll} \frac{d}{dx} \sin x = \cos x, & \frac{d}{dx} \cos^{-1} x = \frac{1}{\sqrt{1-x^2}}, \text{ for } -1 < x < 1 \\ \frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}, & \frac{d}{dx} \cot^{-1} x = -\frac{1}{1-x^2}, \text{ for } -1 < x < 1 \\ \frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2-1}}, \text{ for } |x| > 1 & \frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2-1}} \text{ for } |x| > 1 \\ \frac{d}{dx} e^x = e^x & \frac{d}{dx} \cot^{-1} x = -\frac{1}{|x|\sqrt{x^2-1}}, \text{ for } |x| > 1 \end{array}$$

2