Final Exam：

Time：1／22（M），3：10－5：00；Place：格致堂

Chap 1：Sec．1．2－Sec．1．5：
1．Let $f(x)=\left\{\begin{array}{ll}|x+2| & \text { for } x \leq 0 ; \\ 2+x^{2} & \text { for } 0<x<2 ; \\ x^{3} & \text { for } x \geq 2\end{array}\right.$ ．Find（a） $\lim _{x \rightarrow 0^{-}} f(x),(\mathrm{b}) \lim _{x \rightarrow 0^{+}} f(x),(\mathrm{c}) \lim _{x \rightarrow 2^{-}} f(x)$, （d） $\lim _{x \rightarrow 2^{+}} f(x)$ ，（e） $\lim _{x \rightarrow 0} f(x),(\mathrm{f}) \lim _{x \rightarrow 2} f(x)$.
2．Let $f(x)=\left\{\begin{array}{ll}c x-2 & \text { for } x \leq 2 ; \\ c x^{2}+2 & \text { for } x>2\end{array}\right.$ Find c such that $f(x)$ is continuous．
3．Determine the intervals on which $f(x)=\ln \left(1-x^{2}\right)$ is continuous．
4．Compute（i） $\lim _{x \rightarrow 0} \frac{\sqrt{x+9}-3}{x}$（ii） $\lim _{x \rightarrow 1^{-}} \frac{2 x}{x^{2}-1}$
Chap 2：Sec．2．3－Sec．2．9：
1．Find the tangent line to the curve $y=x^{3}-4 x^{2}+2 x+1$ at the point $(1,0)$ ．
2．Let $y=e^{x^{2}} \cdot\left(x^{2}+x+1\right) \cdot \sqrt{3 x+1} /\left(x^{2}-1\right)$ ．Find $\frac{d y}{d x}$ ．
3．The equation $7 x^{2} y^{3}-5 x y^{2}-4 y=7$ defines y implicitly as a function of x ．Find $\frac{d y}{d x}$ ．
4．Find the detivative of（i）$f(x)=x^{2 x}$ ；（ii）$g(x)=\frac{x^{2}-x}{3 x+1}$ ；（iii）$h(x)=\ln \sqrt{\frac{3 x+1}{5 x+2}}$
5．Determine if $f(x)=x^{7}+2 x^{3}-2006$ is increasing，decreasing or neither．Prove $f(x)=0$ has exactly one solution．

Chap 3：Sec．3．1－Sec．3．8：
1．Estimate $\sqrt[3]{8.02}$ by the method of linear approximation（i．e．，by differentials）．
2．Find the asymptotes of
（i）$f(x)=\frac{(3 x-1)^{2}}{9 x^{2}-4}$ ．
（ii）$f(x)=\frac{(3 x-1)^{2}}{9 x^{2}-1}$ ．（iii）$f(x)=\frac{(3 x-1)^{2}}{x-1}$

3．Let $f(x)=2 x^{3}-3 x^{2}-12 x$ ．Find the relative extrema of $f(x)$ ．
4．Find the absolute maximum and minimum values of the function $f(x)=2 x^{3}-9 x^{2}+12 x$ over the interval $[0,2]$ ．

5．Determine the concavity of $f(x)=4 x^{3}-x^{4}$ ．
6．If $300 \mathrm{~cm}^{2}$ of material is available to make a box with square base and an open top，find the largest possible volume of the box．Explain why your answer is the absolute maximum．

7．Sketch the graph of the continuous function f that satisfies the conditions：

$$
\begin{aligned}
f^{\prime \prime}(x) & >0 \quad \text { if }|x|>2, \quad f^{\prime \prime}(x)<0 \quad \text { if }|x|<2 \\
f^{\prime}(0) & =0, \quad f^{\prime}(x)>0, \quad \text { if } x<0, \quad f^{\prime}(x)<0, \quad \text { if } x>0 \\
f(0) & =1, \quad f(2)=\frac{1}{2}, \quad f(x)>0 \quad \text { for all } x, \text { and } f \text { is and even function. }
\end{aligned}
$$

8．An automobile dealer is selling cars at a price of $\$ 12,000$ ．The demand function is $D(p)=$ $2(15-0.001 p)^{2}$ ，where p is the price of a car．Should the dealer raise or lower the price to increase the revenue？
9. Compute:
(i) $\lim _{x \rightarrow 0}\left(\frac{1}{\ln (x+1)}-\frac{1}{x}\right)$; (ii) $\lim _{x \rightarrow 1^{+}} \frac{\ln x}{(x-1)^{2}}$

Chap 4: Sec. 4.2-Sec. 4.8 (Integration Tables),

1. Let $f(x)=x+1$
(a) Divide the interval $[0,5]$ into n equal parts, and using right endpoints find an expression for the Riemann sum R_{n}.
(b) Using the answer you got from part(a), calculate $\lim _{n \rightarrow \infty} R_{n}$ (without using antiderivatives).
2. Evaluate the given integral
(i) $\int x(x+1)^{9} d x$,
, (ii) $\int \frac{d x}{e^{x} \sqrt{4+e^{2 x}}}$.
(iii) $\int \frac{\ln x}{x \sqrt{1+\ln x}} d x$, (iv) $\int \frac{x^{3}}{\sqrt{x^{2}+1}} d x$.
3. Evaluate the given integral
(i) $\int \sqrt{x} e^{\sqrt{x}} d x=$?; (ii) $\int \frac{\sqrt{\ln x}}{x} d x=$?; (iii) $\int \frac{x}{x+4} d x=$?; (iv) $\int(\ln x)^{2} d x=$?;
4. Evaluate the given integral
(i) $\int \frac{\ln x}{x} d x=$?; (ii) $\int \ln \left(x^{2}\right) d x=$?; (iii) $\int \frac{3 x}{x^{2}-3 x-4} d x=$?; (iv) $\int \frac{-2 x^{2}+4}{x^{3}+2 x^{2}+x} d x=$?
5. Evaluate the definite integrals:
(i) $\int_{1}^{4} \sqrt{x} e^{\sqrt{x}} d x=$?; (ii) $\int_{1}^{e}(\ln x)^{2} d x=$?;

Chap 5: Sec. 5.1, Sec. 5.2 (Volumes by slicing and the method of disks) and Sec. 5.6.

1. Find the region bounded by the parabola $x=2-y^{2}$ and the line $y=x$.
2. A solid is formed by revolving the circular disk $(x-5)^{2}+y^{2}=4$ about the y-axis. Set up, but do not evaluate, a definite integral which give the volume of the solid.
3. Given that the lifetime of a lightbulb is exponentially distributed with pdf $f(x)=6 e^{-6 x}$ (with x measured in years), Find the probability that the lightbulb lasts between 1 and 2 months.
