Chap 1: Sec. 1.2-Sec. 1.5:

$$\begin{aligned} 1. \ & \text{Let} \ f(x) = \begin{cases} |x+2| & \text{for} \ x \leq 0; \\ 2+x^2 & \text{for} \ 0 < x < 2; \\ x^3 & \text{for} \ x \geq 2 \end{cases}. \ & \text{Find (a)} \ \lim_{x \to 0^-} f(x), \text{ (b)} \ \lim_{x \to 0^+} f(x), \text{ (c)} \ \lim_{x \to 2^-} f(x), \\ & \text{(d)} \ \lim_{x \to 2^+} f(x), \text{ (e)} \ \lim_{x \to 0} f(x), \text{ (f)} \ \lim_{x \to 2} f(x) \ . \end{aligned}$$

- 2. Let $f(x) = \begin{cases} cx 2 & \text{for } x \leq 2; \\ cx^2 + 2 & \text{for } x > 2 \end{cases}$ Find c such that f(x) is continuous.
- 3. Determine the intervals on which $f(x) = \ln(1 x^2)$ is continuous.
- 4. Compute (i) $\lim_{x\to 0} \frac{\sqrt{x+9}-3}{x}$ (ii) $\lim_{x\to 1^-} \frac{2x}{x^2-1}$

Chap 2: Sec. 2.3-Sec. 2.9:

- 1. Find the tangent line to the curve $y = x^3 4x^2 + 2x + 1$ at the point (1,0).
- 2. Let $y = e^{x^2} \cdot (x^2 + x + 1) \cdot \sqrt{3x + 1}/(x^2 1)$. Find $\frac{dy}{dx}$.
- 3. The equation $7x^2y^3 5xy^2 4y = 7$ defines y implicitly as a function of x. Find $\frac{dy}{dx}$.
- 4. Find the detivative of (i) $f(x) = x^{2x}$; (ii) $g(x) = \frac{x^2 x}{3x + 1}$; (iii) $h(x) = \ln \sqrt{\frac{3x + 1}{5x + 2}}$ (assuming 3x + 1 > 0
- 5. Determine if $f(x) = x^7 + 2x^3 2006$ is increasing, decreasing or neither. Prove f(x) = 0has exactly one solution. Hint: Sec. 2.9 example 9.1

Chap 3: Sec. 3.1-Sec. 3.8:

- 1. Estimate $\sqrt[3]{8.02}$ by the method of linear approximation (i.e., by differentials).

(i)
$$f(x) = \frac{(3x-1)^2}{3x^2-4}$$
. Ans: V: $x = 2/3$, $x = -2/3$; H: $y = 1$

(ii)
$$f(x) = \frac{(3x-1)^2}{9x^2-1}$$
. Ans: V: $x = -1/3$; H: $y = 1$

2. Find the asymptotes of (i)
$$f(x) = \frac{(3x-1)^2}{9x^2-4}$$
. Ans: V: $x = 2/3$, $x = -2/3$; H: $y = 1$ (ii) $f(x) = \frac{(3x-1)^2}{9x^2-1}$. Ans: V: $x = -1/3$; H: $y = 1$ (iii) $f(x) = \frac{(3x-1)^2}{x-1}$ Ans: V: $x = 1$; H:none; S: $y = 9x + 3$.

- 3. Let $f(x) = 2x^3 3x^2 12x$. Find the relative extrema of f(x).
- 4. Find the absolute maximum and minimum values of the function $f(x) = 2x^3 9x^2 + 12x$ over the interval [0, 2].
- 5. Determine the concavity of $f(x) = 4x^3 x^4$.

- 6. If 300 cm^2 of material is available to make a box with square base and an open top, find the largest possible volume of the box. Explain why your answer is the absolute maximum. Hint:example 6.2
- 7. Sketch the graph of the continuous function f that satisfies the conditions:

$$f''(x) > 0$$
 if $|x| > 2$, $f''(x) < 0$ if $|x| < 2$;
 $f'(0) = 0$, $f'(x) > 0$, if $x < 0$, $f'(x) < 0$, if $x > 0$;
 $f(0) = 1$, $f(2) = \frac{1}{2}$, $f(x) > 0$ for all x , and f is and even function.

- 8. An automobile dealer is selling cars at a price of \$12,000. The demand function is D(p) = $2(15-0.001p)^2$, where p is the price of a car. Should the dealer raise or lower the price to increase the revenue? Hint: Find the derivative of the revenue function, $R(p) = p \cdot D(p)$
- 9. Compute: (i) $\lim_{x\to 0} \left(\frac{1}{\ln(x+1)} - \frac{1}{x}\right)$; (ii) $\lim_{x\to 1^+} \frac{\ln x}{(x-1)^2}$

Chap 4: Sec. 4.2-Sec. 4.8 (Integration Tables),

- 1. Let f(x) = x + 1
 - (a) Divide the interval [0,5] into n equal parts, and using right endpoints find an expression

for the Riemann sum R_n . Hint: $1 + 2 + ... + n = \frac{n(n+1)}{2}$

- (b) Using the answer you got from part(a), calculate $\lim_{n\to\infty} R_n$ (without using antiderivatives).

2. Evaluate the given integral (i)
$$\int x(x+1)^9 dx$$
, (ii) $\int \frac{dx}{e^x\sqrt{4+e^{2x}}}$. (iii) $\int \frac{\ln x}{x\sqrt{1+\ln x}} dx$, (iv) $\int \frac{x^3}{\sqrt{x^2+1}} dx$.

3. Evaluate the given integral

(i)
$$\int \sqrt{x}e^{\sqrt{x}} dx = ?$$
; (ii) $\int \frac{\sqrt{\ln x}}{x} dx = ?$; (iii) $\int \frac{x}{x+4} dx = ?$; (iv) $\int (\ln x)^2 dx = ?$;

4. Evaluate the given integral

(i)
$$\int \frac{\ln x}{x} dx = ?$$
; (ii) $\int \ln (x^2) dx = ?$; (iii) $\int \frac{3x}{x^2 - 3x - 4} dx = ?$; (iv) $\int \frac{-2x^2 + 4}{x^3 + 2x^2 + x} dx = ?$

5. Evaluate the definite integrals:

(i)
$$\int_1^4 \sqrt{x} e^{\sqrt{x}} dx = ?$$
; (ii) $\int_1^e (\ln x)^2 dx = ?$;

6. Evaluate the given integral i)
$$\int_{-\infty}^{\infty} \frac{e^{-x}}{(1+e^{-x})^2} dx$$
 iii) $\lim_{R\to\infty} \int_{-R}^{R} x^3 dx$

7. Determine whether the integral converges or diverges:

i)
$$\int_0^1 x^{-1/3} dx$$
 ii) $\int_0^1 x^{-4/3} dx$ iii) $\int_1^1 x^{-4/3} dx$ iv) $\int_{-1}^1 x^{-1/3} dx$