TA/classroom: \qquad
\qquad

Quiz 10

Dec. 26, 2007

1. (5 pts) Use Riemann Sums to compute the given definite integral

$$
\int_{0}^{1} x^{2} d x
$$

2. (5 pts) Use the Fundamental Theorem to compute the given definite integral

$$
\int_{0}^{1} x^{2} d x
$$

3. (10 pts) Given $F(x)=\int_{x}^{x^{2}} \sqrt{t^{2}+1} d t$, use the Fundamental Theorem to compute $F^{\prime}(x)$

- Theorem 1.1 If n is any positive integer and c is any constant, then

$$
\sum_{i=1}^{n} c=c n, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Fundamental Theorem of Calculus Part I: If f is continuous on $[a, b]$ and $F(x)$ is any antiderivative of f, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
- Fundamental Theorem of Calculus, Part II: If f is continuous on $[a, b]$ and $F(x)=$ $\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$, on $[a, b]$.

