\qquad
\qquad

Quiz 10

Dec. 26, 2007

1. (5 pts) Use Riemann Sums to compute the given definite integral

$$
\int_{0}^{1} x^{2} d x
$$

Set $f(x)=x^{2}, \Delta x=\frac{1-0}{N}$ and $x_{i}=0+i \Delta x=\frac{i}{N}$.
Then

$$
\begin{gathered}
A_{N}=\sum_{i=1}^{N} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{N}\left(\frac{i}{N}\right)^{2} \frac{1}{N}=\frac{1}{N^{3}} \sum_{i=1}^{N} i^{2}=\frac{1}{N^{3}} \frac{N(N+1)(2 N+1)}{6} \\
\int_{0}^{1} x^{2} d x=\lim _{N \rightarrow \infty} \frac{1}{N^{3}} \frac{N(N+1)(2 N+1)}{6}=\frac{1}{3}
\end{gathered}
$$

2. (5 pts) Use the Fundamental Theorem to compute the given definite integral

$$
\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3}
$$

3. (10 pts) Given $F(x)=\int_{x}^{x^{2}} \sqrt{t^{2}+1} d t$, use the Fundamental Theorem to compute $F^{\prime}(x)$

$$
F^{\prime}(x)=\sqrt{x^{4}+1}\left(x^{2}\right)^{\prime}-\sqrt{x^{2}+1}(x)^{\prime}=2 x{\sqrt{x^{4}+1}}^{\prime}-\sqrt{x^{2}+1} .
$$

or, let $G(x)=\int_{0}^{x} \sqrt{t^{2}+1} d t$, then we have $F(x)=G\left(x^{2}\right)-G(x)$ and, by Fundamental Theorem of Calculus, $G^{\prime}(x)=\sqrt{x^{2}+1}$.
Thus

$$
F^{\prime}(x)=\left(G\left(x^{2}\right)-G(x)\right)^{\prime}=G^{\prime}\left(x^{2}\right)\left(x^{2}\right)^{\prime}-G^{\prime}(x)=2 x \sqrt{x^{4}+1}-\sqrt{x^{2}+1} .
$$

- Theorem 1.1 If n is any positive integer and c is any constant, then

$$
\sum_{i=1}^{n} c=c n, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Fundamental Theorem of Calculus Part I: If f is continuous on $[a, b]$ and $F(x)$ is any antiderivative of f, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
- Fundamental Theorem of Calculus, Part II: If f is continuous on $[a, b]$ and $F(x)=$ $\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$, on $[a, b]$.

