TA/classroom: \qquad
\qquad

Quiz 3

Oct. 24, 2007

1. (10 pts) Determine the value of a that makes the given function continuous at $x=0$.

$$
f(x)=\left\{\begin{array}{cc}
a e^{x}+2 & \text { if } x<0 \\
a^{5} x^{5}+a^{2} x^{2}+x-a & \text { if } x \geq 0
\end{array}\right.
$$

Since

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =a e^{0}+2=a+2, \\
\lim _{x \rightarrow 0^{+}} f(x) & =-a, \\
f(0) & =-a,
\end{aligned}
$$

$f(x)$ will be continuous at $x=0$ if we let $a+2=-a$ or $a=-1$.
2. Determine the following limits (answer as appropriate, with a number, $-\infty, \infty$ or does not exist).

- (3 pts) $\lim _{x \rightarrow 2^{-}} \frac{x}{2-x}$

$$
\lim _{x \rightarrow 2^{-}} \frac{x}{2-x}=+\infty \quad\left(x \rightarrow 2^{-} \Rightarrow 0<x<2 ; 2-x>0 \text { and } 2-x \rightarrow 0^{+}\right)
$$

- (3 pts) $\lim _{x \rightarrow 2^{+}} \frac{x}{2-x}$

$$
\lim _{x \rightarrow 2^{+}} \frac{x}{2-x}=-\infty \quad\left(x \rightarrow 2^{+} \Rightarrow x>2 ; 2-x<0 \text { and } 2-x \rightarrow 0^{-}\right)
$$

- (4 pts) $\lim _{x \rightarrow+\infty} \frac{x}{2-x}$

$$
\lim _{x \rightarrow \infty} \frac{x}{2-x}=\lim _{x \rightarrow \infty} \frac{1}{2 / x-1}=-1
$$

