\qquad

Quiz 6

Nov. 14, 2007

1. (10 pts) Find the derivative of

$$
f(x)=\ln \sqrt{x^{10} e^{2 x}\left(x^{2}+1\right)}
$$

Ans: Since

$$
\begin{aligned}
f(x) & =\ln \left(x^{10} e^{2 x}\left(x^{2}+1\right)\right)^{1 / 2} \\
& =\frac{1}{2} \ln \left(x^{10} e^{2 x}\left(x^{2}+1\right)\right) \\
& =\frac{1}{2}\left[\ln x^{10}+\ln e^{2 x}+\ln \left(x^{2}+1\right)\right] \\
& =\frac{1}{2}\left[10 \ln x+2 x+\ln \left(x^{2}+1\right)\right], \\
f^{\prime}(x)=\frac{1}{2}\left[10 \frac{1}{x}\right. & \left.+2+\frac{1}{x^{2}+1} \cdot\left(x^{2}+1\right)^{\prime}\right]=\frac{5}{x}+1+\frac{x}{x^{2}+1} .
\end{aligned}
$$

2. (10 pts) Given the curve $y^{3}-x^{2}=-3$. Find $\frac{d y}{d x}$ implicitly. What is the equation of the tangent line at $(2,1)$.
Ans: Apply $\frac{d}{d x}$ to the equation, $y^{3}-x^{2}=-3$, we have

$$
3 y^{2} \frac{d y}{d x}-2 x=0
$$

or

$$
\frac{d y}{d x}=\frac{2 x}{3 y^{2}} .
$$

Since the point $(2,1)$ is on the curve, slope of the tangent line at $(2,1)$ is given by

$$
m=\left.\frac{d y}{d x}\right|_{(2,1)}=\frac{2 \cdot 2}{3}=\frac{4}{3} .
$$

The equation of the tangent line is given by

$$
y-1=\frac{4}{3}(x-2) .
$$

