TA/classroom: \qquad
\qquad

Quiz 7

Dec. 5, 2007

1. (8 pts) Estimate $\sqrt{4.02}$ by the method of linear approximation.

Let $f(x)=\sqrt{x}, f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$. Since $f(4)=2$ and $4 \approx 4.02$, we are looking for a linear approxmiation near $x=4$.
$L(x)=f(4)+f^{\prime}(4)(x-4)=2+\frac{1}{2} \frac{1}{2}(x-4)=2+\frac{1}{4}(x-4)$.
So $L(4.02)=2+\frac{1}{4}(4.02-4)=2.005 \approx \sqrt{4.02}$
2. (6 pts) Compute

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{2}}
$$

Note that $\lim _{x \rightarrow 0} e^{x}-1=0$ and $\lim _{x \rightarrow 0} x^{2}=0$. The limit has an indeterminate form $\frac{0}{0}$ and we can apply the L'Hôpital's Rule.

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}}{2 x}=D N E
$$

Note that $\lim _{x \rightarrow 0^{-}} \frac{e^{x}}{2 x}=-\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{\frac{e}{}^{2}}{2 x}=\infty$.
3. (6 pts) Compute

$$
\lim _{x \rightarrow 0^{+}} x^{x}
$$

Note that the limit has an indeterminate form 0^{0} and we can apply the L'Hôpital's Rule. Let $y=x^{x}$, so that $\ln y=\ln x^{x}=x \ln x \quad(x>0)$. Now consider the limit

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln y & =\lim _{x \rightarrow 0^{+}} x \ln x \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \quad \text { (By L'Hôpital's Rule.) } \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

Thus

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{x} & =\lim _{x \rightarrow 0^{+}} e^{\ln y} \\
& =e^{\lim _{x \rightarrow 0^{+}} \ln y} \quad\left(e^{x} \text { is a continuous function. }\right) \\
& =e^{0} \\
& =1
\end{aligned}
$$

