Name:

Student ID:_____

Quiz 7

Dec. 5, 2007

1. (8 pts) Estimate $\sqrt{4.02}$ by the method of linear approximation.

Let $f(x) = \sqrt{x}$, $f'(x) = \frac{1}{2}x^{-1/2}$. Since f(4) = 2 and $4 \approx 4.02$, we are looking for a linear approximation near x = 4.

$$L(x) = f(4) + f'(4)(x-4) = 2 + \frac{1}{2}\frac{1}{2}(x-4) = 2 + \frac{1}{4}(x-4)$$

So $L(4.02) = 2 + \frac{1}{4}(4.02 - 4) = 2.005 \approx \sqrt{4.02}$

2. (6 pts) Compute

$$\lim_{x \to 0} \frac{e^x - 1}{x^2}$$

Note that $\lim_{x\to 0} e^x - 1 = 0$ and $\lim_{x\to 0} x^2 = 0$. The limit has an indeterminate form $\frac{0}{0}$ and we can apply the L'Hôpital's Rule.

$$\lim_{x \to 0} \frac{e^x - 1}{x^2} = \lim_{x \to 0} \frac{e^x}{2x} = DNE$$

Note that $\lim_{x \to 0^-} \frac{e^x}{2x} = -\infty$ and $\lim_{x \to 0^+} \frac{e^x}{2x} = \infty$.

3. (6 pts) Compute

$$\lim_{x \to 0^+} x^x$$

Note that the limit has an indeterminate form 0^0 and we can apply the L'Hôpital's Rule. Let $y = x^x$, so that $\ln y = \ln x^x = x \ln x$ (x > 0). Now consider the limit

$$\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x$$
$$= \lim_{x \to 0^+} \frac{\ln x}{1/x}$$
$$= \lim_{x \to 0^+} \frac{1/x}{-1/x^2} \quad (By L'Hôpital's Rule.)$$
$$= \lim_{x \to 0^+} -x$$
$$= 0$$

Thus

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln y}$$

= $e^{\lim_{x \to 0^+} \ln y}$ (e^x is a continuous function.)
= e^0
= 1