\qquad

Quiz 8

Dec. 12, 2007

1. (10 pts) An automobile dealer is selling cars at a price of $\$ 22,000$. The demand function is $D(p)=2(30-0.001 p)^{2}$, for $0 \leq p \leq 30000$, where p is the price of a car. Should the dealer raise or lower the price to increase the revenue? What is the price that makes the maximum revenue? (Revenue function: $R(p)=p \cdot D(p)$)
$R(p)=p \cdot D(p)=2 p(30-0.001 p)^{2}$ and
$R^{\prime}(p)=2(30-0.001 p)^{2}-0.004 p(30-0.001 p)=(60-0.006 p)(30-0.001 p)$.
$R^{\prime}(22000)=6(10-22)(30-22)<0 \Rightarrow$ the dealer should lower the price.
Critical number: $R^{\prime}(p)=0 \Rightarrow p=10000$ or 30000 .
Since $R(10000)=2 \cdot 10000 \cdot(20)^{2}=800000, R(30000)=0$ and $R(0)=0, p=10000$ makes the maximum revenue.
2. (10 pts) For a small company spending $\$ x$ thousand per year in advertising, suppose that annual sales in thousands of dollars equal $s(x)=80-20 e^{-0.04 x}$. If the current advertising budget is $x=40$ and the budget is increasing at a rate of $\$ 1500$ per year, find the rate of change of sales.
Note that the rate of change of sales per year is $\frac{d s}{d t}=\frac{d s}{d x} \cdot \frac{d x}{d t}$.
The budget is increasing at a rate of $\$ 1500$ per year $\Rightarrow \frac{d x}{d t}=+1500 / 1000=+1.5$
$s^{\prime}(x)=-20 \cdot(-0.04) e^{-0.04 x}=0.8 e^{-0.04 x}$ and $s^{\prime}(40)=0.8 e^{-1.6}$.
the rate of change of sales per year is $\frac{d s}{d t}=1.5 \cdot 0.8 e^{-1.6}=1.2 e^{-1.6}$.
