Revised November 7, 2009

Steps to determine the local and global extrema of a given function

- 1. Find all critical points (f'(c) = 0 or DNE)
- 2. Find the endpoints of the domain of f
- 3. Use the first derivative test to identify the local extrema.
- Example 1: $f(x) = 3x^4 + 4x^3 6x^2 12x + 12$
 - 1. Domain of the function = $(-\infty.\infty)$ (no endpoints)
 - 2. $f'(x) = 12x^3 + 12x^2 12x 12 = 12(x+1)^2(x-1)$; Critical numbers: x = 1 and x = -1.
 - 3. Interval of increasing and decreasing: Note: first divide the domain into subintervals according to the location of critical numbers.

	$(-\infty, -1)$	(-1,1)	$(1,\infty)$
x	-2	0	2
f'(x)	-	-	+
f(x)	Dec	Dec	Inc

- 4. Local maximum: None; local minimum at x = 1 (1st derivative test)
- 5. Global (abs) maximum: None ($\lim_{x\to\infty} f(x) = \infty$); global minimum at x=1: Since f(x) is a polynomial, it is continuous on $(-\infty, \infty)$. Since the function is decreasing to the left of 1 and increasing to the right of 1.
- 6. Other questions: (Without sketching the graph) Can you find the abs max/min of f(x) on [-2, 2], and [-2, 0]? How do you know that f(x) has no x-intercept (or $f(x) \neq 0$)?
- Example 2: $f(x) = 3x^4 + 4x^3 6x^2 12x + 12$, [-2, 2]
 - 1. Domain of the function = [-2, 2]: Endpoints: -2, 2
 - 2. $f'(x) = 12x^3 + 12x^2 12x 12 = 12(x+1)^2(x-1)$; Critical numbers: x = 1 and x = -1 (All critical points are in the domain).
 - 3. Interval of increasing and decreasing: Note: first divide the domain into subintervals according to the location of critical numbers.

	(-2, -1)	(-1,1)	(1, 2)
x	-1.5	0	1.5
f'(x)	-	-	+
f(x)	Dec	Dec	Inc

- 4. Local maxima at x = -2 and x = 2; local minimum at x = 1 (1st derivative test)
- 5. End points: f(-2) = 28; f(2) = 44; Critical points: f(-1) = 17; f(1) = 1 Global (abs) maximum at x = 2; global minimum at x = 1

1

- Example 3: $f(x) = 3x^4 + 4x^3 6x^2 12x + 12$, [0, 2)
 - 1. Domain of the function = [0, 2): Endpoints: 0. (Note 2 is not in the domain)
 - 2. $f'(x) = 12x^3 + 12x^2 12x 12 = 12(x+1)^2(x-1)$; Critical numbers: x = 1. (-1 is not in the domain).
 - 3. Interval of increasing and decreasing: Note: first divide the domain into subintervals according to the location of critical numbers.

	(0,1)	(1, 2)
x	.5	1.5
f'(x)	-	+
f(x)	Dec	Inc

- 4. Local maxima at x = 0; local minimum at x = 1 (1st derivative test)
- 5. Critical points: f(1) = 1; Endpoints: f(0) = 12, $\lim_{x\to 2} f(x) = 44$ Global (abs) maximum: None; global minimum at x=1