Revised November 7, 2009
Steps to determine the local and global extrema of a given function

1. Find all critical points $\left(f^{\prime}(c)=0\right.$ or DNE)
2. Find the endpoints of the domain of f
3. Use the first derivative test to identify the local extrema.

- Example 1: $f(x)=3 x^{4}+4 x^{3}-6 x^{2}-12 x+12$

1. Domain of the function $=(-\infty . \infty)$ (no endpoints)
2. $f^{\prime}(x)=12 x^{3}+12 x^{2}-12 x-12=12(x+1)^{2}(x-1)$;

Critical numbers: $x=1$ and $x=-1$.
3. Interval of increasing and decreasing: Note: first divide the domain into subintervals according to the location of critical numbers.

	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
x	-2	0	2
$f^{\prime}(x)$	-	-	+
$f(x)$	Dec	Dec	Inc

4. Local maximum: None; local minimum at $x=1$ (1st derivative test)
5. Global (abs) maximum: None $\left(\lim _{x \rightarrow \infty} f(x)=\infty\right)$; global minimum at $x=1$:

Since $f(x)$ is a polynomial, it is continuous on $(-\infty, \infty)$. Since the function is decreasing to the left of 1 and increasing to the right of 1.
6. Other questions: (Without sketching the graph) Can you find the abs max/min of $f(x)$ on $[-2,2]$, and $[-2,0]$? How do you know that $f(x)$ has no x-intercept (or $f(x) \neq 0)$?

- Example 2: $f(x)=3 x^{4}+4 x^{3}-6 x^{2}-12 x+12,[-2,2]$

1. Domain of the function $=[-2,2]$: Endpoints: $-2,2$
2. $f^{\prime}(x)=12 x^{3}+12 x^{2}-12 x-12=12(x+1)^{2}(x-1)$;

Critical numbers: $x=1$ and $x=-1$ (All critical points are in the domain).
3. Interval of increasing and decreasing: Note: first divide the domain into subintervals according to the location of critical numbers.

	$(-2,-1)$	$(-1,1)$	$(1,2)$
x	-1.5	0	1.5
$f^{\prime}(x)$	-	-	+
$f(x)$	Dec	Dec	Inc

4. Local maxima at $x=-2$ and $x=2$; local minimum at $x=1$ (1st derivative test)
5. End points: $f(-2)=28 ; f(2)=44$; Critical points: $f(-1)=17 ; f(1)=1$

Global (abs) maximum at $x=2$; global minimum at $x=1$

- Example 3: $f(x)=3 x^{4}+4 x^{3}-6 x^{2}-12 x+12,[0,2)$

1. Domain of the function $=[0,2)$: Endpoints: 0 . (Note 2 is not in the domain)
2. $f^{\prime}(x)=12 x^{3}+12 x^{2}-12 x-12=12(x+1)^{2}(x-1)$;

Critical numbers: $x=1$. (-1 is not in the domain).
3. Interval of increasing and decreasing: Note: first divide the domain into subintervals according to the location of critical numbers.

	$(0,1)$	$(1,2)$
x	.5	1.5
$f^{\prime}(x)$	-	+
$f(x)$	Dec	Inc

4. Local maxima at $x=0$; local minimum at $x=1$ (1st derivative test)
5. Critical points: $f(1)=1$; Endpoints: $f(0)=12, \lim _{x \rightarrow 2} f(x)=44$

Global (abs) maximum: None ; global minimum at $x=1$

