Name： \qquad

Student ID number：

\qquad
Part I：Problem 1－5 選擇及填充－No Partial Credit

1．（ 5 pts$) \lim _{x \rightarrow-\infty} \frac{x^{2}-x-1}{2 x^{2}-7}=$ ？
A）∞
B）$-\infty$ ，
C） $1 / 2$ ，
D）$-1 / 2$

2．$(5 \mathrm{pts}) \lim _{x \rightarrow \infty} \sqrt{x^{2}+1}=$ ？
A）∞
B）$-\infty$ ，
C） 1 ，
D）-1

3．（ 5 pts）The population of the United States from 1790 to 1860 was shown in the table below．

Year	1790	1800	1810	1820	1830	1840	1850	1860
Population	$3,929,214$	$5,308,483$	$7,239,881$	$9,638,453$	$12,866,020$	$17,069,453$	$23,191,876$	$31,443,321$

Determine if the population of the United States from 1790 to 1860 was increas－ ing exponentially or as a polynomial．
A）exponentially $\left(y=a e^{b x}\right)$ ．
B）as a polynomial $\left(y=b x^{n}\right)$ ．

4．（ 10 pts ）Match the curves in the figure to the functions？
\qquad
$e^{x}=$
$e^{-x}=$ \qquad ，
$e^{x / 2}=$ \qquad ，
$-e^{x}=$ \qquad ，
$\ln x=$ \qquad ，

Page 1
\qquad

5．（10 pts）Identify the limits from the graph of $f(x)$

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & = \\
\lim _{x \rightarrow 3^{+}} f(x) & = \\
\lim _{x \rightarrow 3^{-}} f(x) & = \\
\lim _{x \rightarrow 3} f(x) & = \\
f(3) &
\end{aligned}
$$

Part II：Problem 6－13 計算及澄明題
6．（10 pts）Find the domain of
（a）$f(x)=\frac{1}{1-e^{x}}$ ．
（b）$g(x)=\ln (2+\ln (x))$ ．

7．（10 pts）Find the inverse function of
（a）$f(x)=\frac{4 x-1}{2 x+3}$ ．
（b）$g(x)=\ln (x+3)$ ．
8. (10 pts) Show that $f(x)=\cos x-x$ has a zero in $(0,1)$ (use Intermediate Value Theorem)
9. (10 pts) Evaluate the limit, if it exists.
(a) $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$.
(b) $\lim _{t \rightarrow 1}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$.

Name:

Student ID number:

10. (10 pts) Determine whether $f^{\prime}(0)$ exists. (Hint: the definition of derivative and the Squeeze Theorem)

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

11. (10 pts) Let $f(x)=\left\{\begin{array}{ll}x^{2}+1, & x \leq 1, \\ m x+b, & x>1 .\end{array}\right.$ Find the value of m and b that make f differentiable at $x=1$.
12. (5 pts) Find the derivative of

$$
y=\frac{x^{2}-2 \sqrt{x}}{x}
$$

