Name： \qquad
Student ID number： \qquad
TA／classroom：
Guidelines for the test：
－Put your name or student ID number on every page．
－There are 11 problems
－The exam is closed book；calculators are not allowed．
－For problem－solving（計算與證明題）problems，please show all work，unless instructed other－ wise．Partial credit will be given only for work shown．Print as legibly as possible－correct answers may have points taken off，if they＇re illegible．
－Mark the final answer．
\qquad

1. (5 pts; No Partial Credits) Match the function $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$ with the graphs

(A)

(B)

(C)
E

(D)
2. (10 pts) Find the area of the region enclosed by the curve $r=\sin 2 \theta, 0 \leq \theta \leq \pi / 2$.

$r=\sin 2 \theta$
3. (15 pts)
(a) Given that $\mathbf{r}(t)=<e^{2 t}, t^{2}-t, \cos 2 t>$, calculate

- $(2 \mathrm{pts}) \lim _{t \rightarrow 0} \mathbf{r}(t)=$
- $(4 \mathrm{pts}) \int \mathbf{r}(t) d t=$
(b) Given the position function $\mathbf{r}(t)=<\sin 2 t, \cos 2 t, t>$,
- (2 pts) find the velocity, $\mathbf{v}(t)=\frac{d}{d t} \mathbf{r}(t)$
- $(2 \mathrm{pts})$ find the unit tangent vector $\mathbf{T}(t)$
- (3 pts) find the principal unit normal vector $\mathbf{N}(t)$
- $(2 \mathrm{pts})$ find the binormal vector $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$

4. (5 pts each) Determine if the series is absolutely convergent, conditionally convergent or divergent.
(a) $\sum_{k=1}^{\infty}\left(\frac{k+1}{k}\right)^{k}$
(b) $\sum_{k=1}^{\infty} \frac{2}{1+e^{k}}$
(c) $\sum_{k=1}^{\infty}(\sqrt[k]{2}-1)$
(d) $\sum_{k=1}^{\infty} \frac{\cos k \pi}{k+1}$
\qquad
\qquad
5. (5 pts) Determine the radius of convergence of the power series.

$$
\sum_{k=1}^{\infty} \frac{(3 k)!}{(k!)^{3}} x^{k}
$$

6. (5 pts) For $f(x)=e^{x}$, find the Taylor polynomial of degree 3 expanded about $x=0$.
7. (15 pts) Given that $\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \quad$ for $-1<x<1$,

- (6 pts) find the power series representation of $\frac{1}{1+x^{2}}$ and determine the radius and interval of convergence.
- $(6 \mathrm{pts})$ Find the power series representation of $\tan ^{-1}(x)$ and determine the radius and interval of convergence.
- $(3 \mathrm{pts}) \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{2 k+1}=$?
\qquad
\qquad

8. (5 pts) Show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{3} y}{x^{6}+y^{2}}
$$

9. (5 pts)

$$
\lim _{(x, y) \rightarrow(2,3)} \frac{6 x y}{x^{2}+y^{2}}=?
$$

10. (10 pts) Find the indicated partial derivatives.

$$
f(x, y)=x^{y}-3 x y, \quad x, y>0 ; \quad f_{x}, \quad f_{y}, \quad f_{x y}, \quad f_{x x}
$$

11. (5 pts) Find the equation of the tangent plane to the surface at the given point.

$$
z=x^{2}-y^{2}+1 \quad \text { at }(2,1,2)
$$

