\qquad

Quiz 1

Feb. 23, 2006

1. $(5 \mathrm{pts})$ Determine if the sequence converges or diverges. If it converges, determine the limit.

$$
a_{n}=\frac{2 n^{2}+1}{n^{2}-3}
$$

Ans:

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{n^{2}-3}=\lim _{n \rightarrow \infty} \frac{2+1 / n^{2}}{1-3 / n^{2}}=2
$$

The sequence converges to 2
2. (5pts)Determine if the series converges or diverges. If it converges, find the sum.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{3^{k}}+\frac{2}{k}\right)
$$

Ans:
(i) $\sum_{n=1}^{\infty} \frac{1}{3^{k}}$ converges (geometric series)
(ii) $\sum_{n=1}^{\infty} \frac{2}{k}=2 \sum_{n=1}^{\infty} \frac{1}{k}$ diverges (harmonic series)

Therefore $\sum_{n=1}^{\infty}\left(\frac{1}{3^{k}}+\frac{2}{k}\right)$ diverges.
3. (0pt) Achilles and the tortoise-"You can never catch up."
"In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the slower must always hold a lead."
(Aristotle Physics VI:9, 239b15)
Being very fast, Greek hero Achilles gives the Tortoise a head start. But that would be a big mistake, claims Zeno, for then Achilles could never catch up. Why not? The proof is that by the time Achilles reaches the Tortoises starting point S_{1}, the Tortoise will have moved a little to S_{2}, but then by the time Achilles reaches S_{2} the Tortoise will have moved on to S_{3}, but then by the time ...

Write your solutions as complete as possible. Working time: 10 minutes.

