Calculus II

Name:
Student ID: \qquad

Quiz 4

Mar. 16, 2006

1. (5 pts) Determine the radius and interval of convergence of the power series.

$$
\sum_{k=1}^{\infty} \frac{k}{2^{k}}(x-2)^{k}
$$

Ans:

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right| & =\lim _{k \rightarrow \infty} \frac{(k+1)|x-2|^{k+1}}{2^{k+1}} \frac{2^{k}}{k|x-2|^{k}} \\
& =\lim _{k \rightarrow \infty} \frac{k+1}{k} \frac{|x-2|}{2} \\
& =\frac{|x-2|}{2}
\end{aligned}
$$

By Ratio Test, the series converges for $\frac{|x-2|}{2}<1$ or $|x-2|<2$ and diverges for $\frac{|x-2|}{2}>1$ or $|x-2|>2$ so the radius of convergence is 2 .
At $x=4$, the series is

$$
\sum_{k=1}^{\infty} \frac{k}{2^{k}}(2)^{k}=\sum_{k=1}^{\infty} k
$$

Since $\lim _{k \rightarrow \infty} k \neq 0$, by Divergence Test (kth-term test), the series diverges.
At $x=0$, the series is

$$
\sum_{k=1}^{\infty} \frac{k}{2^{k}}(-2)^{k}=\sum_{k=1}^{\infty}(-1)^{k} k
$$

Since $\lim _{k \rightarrow \infty}(-1)^{k} \neq 0$, by Divergence Test (kth-term test), the series diverges. Therefore, the interval of convergence is $(0,4)$.
2. (5pts) For $f(x)=\sin x$, find the Taylor polynomial of degree 2 expanded about $x=\frac{\pi}{2}$. Ans:

$$
\begin{aligned}
& f(x)=\sin x \quad f(\pi / 2) \quad=1 \\
& f^{\prime}(x)=\cos x \quad f^{\prime}(\pi / 2) \quad=0 \\
& f^{\prime \prime}(x)=-\sin x \quad f^{\prime \prime}(\pi / 2)=-1 \\
& P_{2}(x)=f(\pi / 2)+\frac{f^{\prime}(\pi / 2)}{1!}\left(x-\frac{\pi}{2}\right)^{1}+\frac{f^{\prime \prime}(\pi / 2)}{2!}\left(x-\frac{\pi}{2}\right)^{2}=1-\frac{1}{2}\left(x-\frac{\pi}{2}\right)^{2}
\end{aligned}
$$

Write your solutions as complete as possible. Working time: 15 minutes.

