Calculus II

Name:
Student ID:

Quiz 5

Mar. 23, 2006

1. $(8 \mathrm{pts})$ Given that

$$
\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \quad \text { for }-1<x<1,
$$

find the Taylor series of $\ln (1+x)$ and $\frac{1}{1+x^{2}}$. Determine the corresponding radius and interval of convergence.
Ans:
(i) $\ln (1+x)$

Since $\int \frac{1}{1+x} d x=\ln (1+x)+C$, we can get the Taylor series of $\ln (1+x)$ from the series of $\frac{1}{1+x}$, (term-by-term integration)

$$
\ln (1+x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1}+C
$$

To determine the constant, C, we plug $x=0$ into the equation,

$$
0=\ln (1)=\sum_{k=0}^{\infty}(-1)^{k} \frac{0^{k+1}}{k+1}+C
$$

Therefore,

$$
\ln (1+x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1} .
$$

Since the radius of convergence of $\sum_{k=0}^{\infty}(-1)^{k} x^{k}$ is 1 , the radius of convergence of $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1}$ is also 1 .
At $x=1, \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k+1}$ is an Alternating Harmonic Series and the series converges.
At $x=-1, \sum_{k=0}^{\infty}(-1)^{k} \frac{(-1)^{k+1}}{k+1}=\sum_{k=0}^{\infty} \frac{-1}{k+1}$ is a Harmonic series and the series diverges.
Therefore the interval of convergence is $(-1,1]$
(ii) $\frac{1}{1+x^{2}}$

Since $\frac{1}{1+x}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}, \frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k}\left(x^{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}$.
The radius of convergence is the same.
At $x= \pm 1$, the series is $\sum_{k=0}^{\infty}(-1)^{k}$.
Since $\lim _{k \rightarrow \infty}(-1)^{k} \neq 0$ (diverge), by kth-term test for divergence, the series diverges at $x= \pm 1$.
Therefore the interval of convergence is $(-1,1)$
2. (2pts)

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k+1}=?
$$

Since

$$
\begin{gathered}
\ln (1+x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1} \quad \text { for } x \in(-1,1] \\
\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k+1}=\ln (1+1)=\ln 2
\end{gathered}
$$

(Note: $1 \in(-1,1])$
Write your solutions as complete as possible. Working time: 15 minutes.

