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INFINITE SERIES

C H A P T E R

7

In our daily lives, we are increasingly seeing the impact of digital technologies.
You needn’t go far to observe this phenomenon. For instance, the dominant media
for the entertainment industry are now CDs and DVDs; we have digital video
and still cameras and the Internet gives us easy access to a virtual world of digital
information. An essential ingredient in this digital revolution is the use of Fourier
analysis, a mathematical idea that is introduced in this chapter.

In this digital age, we have learned to represent information in a variety of
ways. The ability to easily transform one representation into another gives us
tremendous problem-solving powers. As an example, consider the music made
by a saxophone. The music is initially represented as a series of notes on sheet music, but the musician
brings her own special interpretation to the music. Such an individual performance can then be recorded,
to be copied and replayed later. While this is easily accomplished with conventional analog technology,
the advent of digital technology has allowed us to record the performance with a previously unknown
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fidelity. The key to this is that the music is broken down into its component parts, which are
individually recorded and then reassembled on demand to recreate the original sound. Think
for a moment how spectacular this feat really is. The complex rhythms and intonations gener-
ated by the saxophone reed and body are somehow converted into a relatively small number
of digital bits (zeroes and ones). The bits are then turned back into music by a CD player.

The basic idea behind any digital technology is to break down a complex whole into a
set of component pieces. To digitally capture a saxophone note, all of the significant features
of the saxophone waveform must be captured.

Done properly, the components can then be recombined to reproduce each original note.
In this chapter, we learn how series of numbers combine and how functions can be broken
down into a series of component functions. As part of this discussion, we will explore how
music synthesizers work, but we will also see how calculators can quickly approximate a
quantity like sin 1.23 and how equations can be solved using functions for which we don’t
even have names. This chapter opens up a new world of important applications.

7.1 SEQUENCES OF REAL NUMBERS

The mathematical notion of sequence is not much different from the common English usage
of the word. For instance, if you were asked to describe the sequence of events that led up to
a traffic accident, you’d not only need to list the events, but you’d need to do so in a specific
order (hopefully, the order in which they actually occurred). In mathematics, we use the
term sequence to mean an infinite collection of real numbers, written in a specific order.

We have already seen sequences several times now (although we have not formally in-
troduced the notion). For instance, you have found approximate solutions to nonlinear equa-
tions like tan x − x = 0, by first making an initial guess, x0 and then using Newton’s method
to compute a sequence of successively improved approximations, x1, x2, . . . , xn, . . . .

By sequence, we mean any function whose domain is the set of integers starting with
some integer n0 (often 0 or 1). For instance, the function a(n) = 1

n , for n = 1, 2, 3, . . . ,

defines the sequence
Definition of sequence

1

1
,

1

2
,

1

3
,

1

4
, . . . .

Here, 1
1 is called the first term, 1

2 is the second term and so on. We call a(n) = 1
n the general

term, since it gives a (general) formula for computing all the terms of the sequence. Further,
we usually use subscript notation instead of function notation and write an instead of a(n).

EXAMPLE 1.1 The Terms of a Sequence

Write out the terms of the sequence whose general term is given by an = n + 1

n
, for

n = 1, 2, 3, . . . .

Solution We have the sequence

a1 = 1 + 1

1
= 2

1
, a2 = 2 + 1

2
= 3

2
, a3 = 4

3
, a4 = 5

4
, . . . .

�

We often use set notation to denote a sequence. For instance, the sequence with general

term an = 1

n2
, for n = 1, 2, 3, . . . , is denoted by

{an}∞n=1 =
{

1

n2

}∞

n=1

,
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FIGURE 7.1

an = 1

n2
.

or equivalently, by listing the terms of the sequence:{
1

1
,

1

22
,

1

32
, . . . ,

1

n2
, . . .

}
.

To graph this sequence, we plot a number of discrete points, since a sequence is a function
defined only on the integers (see Figure 7.1). You have likely already noticed something

about the sequence

{
1

n2

}∞

n=1

. As n gets larger and larger, the terms of the sequence, an = 1

n2

get closer and closer to zero. In this case, we say that the sequence converges to 0 and write

lim
n→∞ an = lim

n→∞
1

n2
= 0.

In general, we say that the sequence {an}∞n=1 converges to L
(

i.e., lim
n→∞ an = L

)
if we

can make an as close to L as desired, simply by making n sufficiently large. We call L the
limit of the sequence. You may notice that this language parallels that used in the definition
of the limit

lim
x→∞ f (x) = L

for a function of a real variable x (given in Chapter 1). The only difference is that n can take
on only integer values, while x can take on any real value (integer, rational or irrational).

Most of the usual rules for computing limits of functions of a real variable also apply
to computing the limit of a sequence, as we see in the following result.

THEOREM 1.1

Suppose that {an}∞n=n0
and {bn}∞n=n0

both converge. Then

(i) lim
n→∞(an + bn) = lim

n→∞ an + lim
n→∞ bn,

(ii) lim
n→∞(an − bn) = lim

n→∞ an − lim
n→∞ bn,

(iii) lim
n→∞(anbn) =

(
lim

n→∞ an

) (
lim

n→∞ bn

)
and

(iv) lim
n→∞

an

bn
=

lim
n→∞ an

lim
n→∞ bn

(assuming lim
n→∞ bn 	= 0).

The proof of Theorem 1.1 is virtually identical to the proof of the corresponding theorem
about limits of a function of a real variable (see Theorem 3.1 in section 1.3 and Appendix G)
and is omitted.

REMARK 1.1

To find the limit of a sequence, you should work largely the same as when computing
the limit of a function of a real variable, but keep in mind that sequences are defined
only for integer values of the variable.

NOTES
If you (incorrectly) apply
l’Hôpital’s Rule in example 1.2,
you get the right answer. (Go
ahead and try it; nobody’s
looking.) Unfortunately, you will
not always be so lucky. It’s a lot
like trying to cross a busy
highway: while there are times
when you can successfully cross
with your eyes closed, it’s not
generally recommended.
Theorem 1.2 describes how you
can safely use l’Hôpital’s Rule.

EXAMPLE 1.2 Finding the Limit of a Sequence

Evaluate lim
n→∞

5n + 7

3n − 5
.
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FIGURE 7.2

an = 5n + 7

3n − 5
.

Solution Of course, this has the indeterminate form
∞
∞ . From the graph in Figure 7.2,

it looks like the sequence tends to some limit around 2. Note that we cannot apply
l’Hôpital’s Rule here, since the functions in the numerator and the denominator are not
continuous. (They are only defined for integer values of n, even though you could define
these expressions for any real values of n.) You can, of course, use the simpler method of
dividing numerator and denominator by the highest power of n in the denominator. We
have

lim
n→∞

5n + 7

3n − 5
= lim

n→∞
(5n + 7)

(
1
n

)
(3n − 5)

(
1
n

) = lim
n→∞

5 + 7
n

3 − 5
n

= 5

3
.

�

In example 1.3, we see a sequence that diverges by virtue of its terms tending to +∞.

EXAMPLE 1.3 A Divergent Sequence

Evaluate lim
n→∞

n2 + 1

2n − 3
.an

n
5 10 15 20
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6
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12

FIGURE 7.3

an = n2 + 1

2n − 3
.

Solution Again, this has the indeterminate form
∞
∞ , but from the graph in Figure 7.3,

the sequence appears to be increasing without bound. Dividing top and bottom by n (the
highest power of n in the denominator) we have

lim
n→∞

n2 + 1

2n − 3
= lim

n→∞
(n2 + 1)

(
1
n

)
(2n − 3)

(
1
n

) = lim
n→∞

n + 1
n

2 − 3
n

= ∞

and so, the sequence

{
n2 + 1

2n − 3

}∞

n=1

diverges.
�

10 155

�1

1

an

n

FIGURE 7.4
an = (−1)n .

In example 1.4, we see that a sequence doesn’t need to tend to ±∞ in order to
diverge.

EXAMPLE 1.4 A Divergent Sequence Whose Terms
Do Not Tend to ∞

Determine the convergence or divergence of the sequence {(−1)n}∞n=1.

Solution If we write out the terms of the sequence, we have

{−1, 1, −1, 1, −1, 1, . . .}.
That is, the terms of the sequence alternate back and forth between −1 and 1 and so, the
sequence diverges. To see this graphically, we plot the first few terms of the sequence in
Figure 7.4. Notice that the points do not approach any limit (a horizontal line). �

You can use an advanced tool like l’Hôpital’s Rule to find the limit of a sequence, but
you must be careful. Theorem 1.2 says that if f (x) → L as x → ∞ through all real values,
then f (n) must approach L , too, as n → ∞ through integer values. (See Figure 7.5 for a
graphical representation of this.)

THEOREM 1.2

Suppose that lim
x→∞ f (x) = L . Then, lim

n→∞ f (n) = L , also.
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n

FIGURE 7.5
an = f (n), where f (x) → 2, as
x → ∞.

REMARK 1.2

The converse of Theorem 1.2 is false. That is, if lim
n→∞ f (n) = L , it need not be true

that lim
x→∞ f (x) = L . This is clear from the following observation. Note that

lim
n→∞ cos (2πn) = 1,

since cos (2πn) = 1 for every integer n (see Figure 7.6).
However,

lim
x→∞ cos (2πx) does not exist,

since as x → ∞, cos (2πx) oscillates between −1 and 1 (see Figure 7.7).
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y

FIGURE 7.6
an = cos (2πn).

FIGURE 7.7
y = cos (2πx).

EXAMPLE 1.5 Applying L’Hôpital’s Rule to a Related Function

Evaluate lim
n→∞

n + 1

en
.

5 10 15 20
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n

FIGURE 7.8

an = n + 1

en
.

Solution This has the indeterminate form
∞
∞ , but from the graph in Figure 7.8, it

appears that the sequence converges to 0. However, there is no obvious way to resolve this,
except by l’Hôpital’s Rule (which does not apply to limits of sequences). So, we instead
consider the limit of the corresponding function of a real variable to which we may apply
l’Hôpital’s Rule. (Be sure you check the hypotheses.) We have

lim
x→∞

x + 1

ex
= lim

x→∞

d

dx
(x + 1)

d

dx
(ex )

= lim
x→∞

1

ex
= 0.

From Theorem 1.2, we now have

lim
n→∞

n + 1

en
= 0, also.

�

Although we now have a few tools for computing the limit of a sequence, most inter-
esting sequences resist our attempts to find their limit. In many cases (including infinite
series, which we study throughout the remainder of this chapter), we don’t even have an
explicit formula for the general term. In such circumstances, we must test the sequence
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for convergence in some indirect way. The first indirect tool we present corresponds to the
result (of the same name) for limits of functions of a real variable presented in section 1.3.

THEOREM 1.3 (Squeeze Theorem)

Suppose {an}∞n=n0
and {bn}∞n=n0

are convergent sequences, both converging to the limit,
L . If there is an integer n1 ≥ n0 such that for all n ≥ n1, an ≤ cn ≤ bn, then {cn}∞n=n0

converges to L , too.

In example 1.6, we demonstrate how to apply the Squeeze Theorem to a sequence.
Observe that the trick here is to find two sequences, one on either side of the given sequence
(i.e., one larger and one smaller) that have the same limit.

EXAMPLE 1.6 Applying the Squeeze Theorem to a Sequence

Determine the convergence or divergence of

{
sin n

n2

}∞

n=1

.

105 15 20
�0.05

0.25

0.20

0.15

0.10

0.05

an

n

FIGURE 7.9

an = sin n

n2
.

Solution From the graph in Figure 7.9, the sequence appears to converge to 0, despite
the oscillation. Further, note that you cannot compute this limit using the rules we have
established so far. (Try it!) However, recall that

−1 ≤ sin n ≤ 1, for all n.

Dividing through by n2 gives us
−1

n2
≤ sin n

n2
≤ 1

n2
, for all n ≥ 1.

Finally, observe that

lim
n→∞

−1

n2
= 0 = lim

n→∞
1

n2
.

From the Squeeze Theorem, we now have that

lim
n→∞

sin n

n2
= 0,

also. �

The following useful result follows immediately from Theorem 1.3.

COROLLARY 1.1

If lim
n→∞ |an| = 0, then lim

n→∞ an = 0, also.

PROOF

Notice that for all n,

−|an| ≤ an ≤ |an|
and

lim
n→∞ |an| = 0 and lim

n→∞(−|an|) = − lim
n→∞ |an| = 0.

So, from the Squeeze Theorem, lim
n→∞ an = 0, too.
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Corollary 1.1 is particularly useful for sequences with both positive and negative terms,
as in example 1.7.

EXAMPLE 1.7 A Sequence with Terms of Alternating Signs

Determine the convergence or divergence of

{
(−1)n

n

}∞

n=1

.
105 15 20

�1

�0.5

0.5

an

n

FIGURE 7.10

an = (−1)n

n
.

Solution From the graph of the sequence in Figure 7.10, it seems that the sequence
oscillates but still may be converging to 0. Since (−1)n oscillates back and forth between

−1 and 1, we cannot compute lim
n→∞

(−1)n

n
directly. However, notice that∣∣∣∣ (−1)n

n

∣∣∣∣ = 1

n

and

lim
n→∞

1

n
= 0.

From Corollary 1.1, we get that lim
n→∞

(−1)n

n
= 0, too.

�

We remind you of Definition 1.1, which we use throughout the chapter.

DEFINITION 1.1

For any integer n ≥ 1, the factorial, n! is defined as the product of the first n positive
integers,

n! = 1 · 2 · 3 · · · · · n.

We define 0! = 1.

Example 1.8 shows a sequence whose limit would be extremely difficult to find without
the Squeeze Theorem.

EXAMPLE 1.8 An Indirect Proof of Convergence

Investigate the convergence of

{
n!

nn

}∞

n=1

.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

an

n

FIGURE 7.11

an = n!

nn
.

Solution First, notice that we have no means of computing lim
n→∞

n!

nn
directly. (Try this!)

From the graph of the sequence in Figure 7.11, it appears that the sequence is converging
to 0. Notice that the general term of the sequence satisfies

0 <
n!

nn
= 1 · 2 · 3 · · · · · n

n · n · n · · · · · n︸ ︷︷ ︸
n factors

=
(

1

n

)
2 · 3 · · · · · n

n · n · · · · · n︸ ︷︷ ︸
n − 1 factors

≤
(

1

n

)
(1) = 1

n
. (1.1)
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From the Squeeze Theorem and (1.1), we have that since

lim
n→∞

1

n
= 0 and lim

n→∞ 0 = 0,

then

lim
n→∞

n!

nn
= 0, also.

�

Just as we did with functions of a real variable, we need to distinguish between se-
quences that are increasing and decreasing. The definitions are quite straightforward.

The sequence {an}∞n=1 is increasing if

a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · · .
The sequence {an}∞n=1 is decreasing if

a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ · · · .
If a sequence is either increasing or decreasing, it is called monotonic.

There are any number of ways to show that a sequence is monotonic. Regardless of
which method you use, you will need to show that either an ≤ an+1 for all n (increasing) or
an+1 ≤ an for all n (decreasing). One very useful method is to look at the ratio of the two
successive terms an and an+1. We illustrate this in example 1.9.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

an

n

FIGURE 7.12

an = n

n + 1
.

EXAMPLE 1.9 An Increasing Sequence

Investigate whether the sequence

{
n

n + 1

}∞

n=1

is increasing, decreasing or neither.

Solution From the graph in Figure 7.12, it appears that the sequence is increasing.
However, you should not be deceived by looking at the first few terms of a sequence.

Instead, we look at the ratio of two successive terms. So, if we define an = n

n + 1
, we

have an+1 = n + 1

n + 2
and

an+1

an
=

(
n + 1

n + 2

)
(

n

n + 1

) =
(

n + 1

n + 2

) (
n + 1

n

)

= n2 + 2n + 1

n2 + 2n
= 1 + 1

n2 + 2n
> 1. (1.2)

Since an > 0, notice that we can multiply both sides of (1.2) by an , to obtain

an+1 > an,

for all n and so, the sequence is increasing. As an alternative, notice that you can always

consider the function f (x) = x

x + 1
(of the real variable x) corresponding to the se-

quence. Observe that

f ′(x) = (x + 1) − x

(x + 1)2
= 1

(x + 1)2
> 0,
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which says that the function f (x) is increasing. From this, it follows that the corresponding

sequence an = n

n + 1
is also increasing.

�

EXAMPLE 1.10 A Sequence That Is Increasing for n ≥ 2

Investigate whether the sequence

{
n!

en

}∞

n=1

is increasing, decreasing or neither.

105

50

100

150

200

an

n

FIGURE 7.13

an = n!

en
.

Solution From the graph of the sequence in Figure 7.13, it appears that the sequence

is increasing (and rather rapidly, at that). Here, for an = n!

en
, we have an+1 = (n + 1)!

en+1
,

so that

an+1

an
=

[
(n + 1)!

en+1

]
(

n!

en

) = (n + 1)!

en+1

en

n!

= (n + 1)n!en

e(en)n!
= n + 1

e
> 1, for n ≥ 2.

Since (n + 1)! = (n + 1) · n!

and en+1 = e · en .
(1.3)

Multiplying both sides of (1.3) by an > 0, we get

an+1 > an, for n ≥ 2.

Notice that in this case, although the sequence is not increasing for all n, it is increasing
for n ≥ 2. Keep in mind that it doesn’t really matter what the first few terms do, anyway.
We are only concerned with the behavior of a sequence as n → ∞. �

We need to define one additional property of sequences. We say that the sequence
{an}∞n=n0

is bounded if there is a number M > 0 (called a bound) for which |an| ≤ M , for
all n.

There is often some slight confusion here. A bound is not the same as a limit, although
the two may coincide. The limit of a convergent sequence is the value that the terms of the se-
quence are approaching as n → ∞. On the other hand, a bound is any number that is greater
than or equal to the absolute value of every term. This says that a given sequence may have
any number of bounds (e.g., if |an| ≤ 10 for all n, then |an| ≤ 20, for all n, too). However,
a sequence may have only one limit (or no limit, in the case of a divergent sequence).

EXAMPLE 1.11 A Bounded Sequence

Show that the sequence

{
3 − 4n2

n2 + 1

}∞

n=1

is bounded.

Solution We use the fact that 4n2 − 3 > 0, for all n ≥ 1, to get

|an| =
∣∣∣∣3 − 4n2

n2 + 1

∣∣∣∣ = 4n2 − 3

n2 + 1
<

4n2

n2 + 1
<

4n2

n2
= 4.

So, this sequence is bounded by 4. (We might also say in this case that the sequence is
bounded between −4 and 4.) Further, note that we could also use any number greater
than 4 as a bound. �

We should emphasize that the reason we are considering whether a sequence is mono-
tonic or bounded is that very often we cannot compute the limit of a given sequence directly
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and must rely on indirect means to determine whether or not the sequence is convergent.
Theorem 1.4 provides a powerful tool for the investigation of sequences.

THEOREM 1.4

Every bounded, monotonic sequence converges.

A typical bounded and increasing sequence is illustrated in Figure 7.14a, while a
bounded and decreasing sequence is illustrated in Figure 7.14b. In both figures, notice that
a bounded and monotonic sequence has nowhere to go and consequently, must converge.
The proof of Theorem 1.4 is rather involved and can be found in a more advanced text.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

an

5 10 15 20

2

4

6

n

an

FIGURE 7.14a
A bounded and increasing sequence.

FIGURE 7.14b
A bounded and decreasing sequence.

In the very common case where we do not know how to compute the limit of a sequence,
this theorem says that if we can show that a sequence is bounded and monotonic, then it must
also be convergent, although we may have little idea of what its limit might be. Once we
establish that a sequence converges, we can approximate its limit by computing a sufficient
number of terms, as in example 1.12.

EXAMPLE 1.12 An Indirect Proof of Convergence

Investigate the convergence of the sequence

{
2n

n!

}∞

n=1

.

5 10 15 20

0.5

1.0

1.5

2.0

n

an

FIGURE 7.15

an = 2n

n!
.

n an ���
2n

n!
2 2

4 0.666667

6 0.088889

8 0.006349

10 0.000282

12 0.0000086

14 1.88 × 10−7

16 3.13 × 10−9

18 4.09 × 10−11

20 4.31 × 10−13

Solution First, note that we do not know how to compute lim
n→∞

2n

n!
. This has the inde-

terminate form
∞
∞ , but we cannot apply l’Hôpital’s Rule to it. (Why not?) The graph in

Figure 7.15 suggests that the sequence converges to some number close to 0. To confirm
this suspicion, we first show that the sequence is monotonic. We have

an+1

an
=

[
2n+1

(n + 1)!

]
(

2n

n!

) = 2n+1

(n + 1)!

n!

2n

= 2(2n) n!

(n + 1) n!2n
= 2

n + 1
≤ 1, for n ≥ 1.

Since 2n+1 = 2 · 2n and

(n + 1)! = (n + 1) · n!
(1.4)
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Multiplying both sides of (1.4) by an gives us an+1 ≤ an , for all n and so, the sequence is
decreasing. Next, since we have already shown that the sequence is decreasing, observe
that

0 <
2n

n!
≤ 21

1!
= 2,

for n ≥ 1 (i.e., the sequence is bounded by 2). Since the sequence is both bounded and
monotonic, it must be convergent, by Theorem 1.4. To get an approximation of the limit
of the sequence, we display a number of terms of the sequence in the accompanying
table.

From the table, it appears that the sequence is converging to approximately 0. We can
make a slightly stronger statement, though. Since we have established that the sequence
is decreasing and convergent, we have from our computations that

0 ≤ an ≤ a20 ≈ 4.31 × 10−13, for n ≥ 20.

Further, the limit L must also satisfy the inequality

0 ≤ L ≤ 4.31 × 10−13.

So, even if we can’t conclude that the sequence converges to 0, we can conclude that it
converges to some number extremely close to zero. For most purposes, such an estimate
is entirely adequate. Of course, if you need greater precision, you can always compute a
few more terms. �

REMARK 1.3

Do not underestimate the
importance of Theorem 1.4. This
indirect way of testing a sequence
for convergence takes on
additional significance when we
study infinite series (a special
type of sequence that is the topic
of the remainder of this chapter).

EXERCISES 7.1

WRITING EXERCISES

1. Compare and contrast lim
x→∞

sin πx and lim
n→∞

sin πn. Indicate

the domains of the two functions and how this affects the
limits.

2. Explain why Theorem 1.2 should be true, taking into account
the respective domains and their effect on the limits.

3. In words, explain why a decreasing bounded sequence must
converge.

4. A sequence is said to diverge if it does not converge. The word
“diverge” is well chosen for sequences that diverge to ∞, but is
less descriptive of sequences such as {1, 2, 1, 2, 1, 2, . . .} and
{1, 2, 3, 1, 2, 3, . . .}. Briefly describe the limiting behavior of
these sequences and discuss other possible limiting behaviors
of divergent sequences.

In exercises 1–4, write out the terms a1, a2, . . . , a6 of the given
sequence.

1. an = 2n − 1

n2
2. an = 3

n + 4

3. an = 4

n!
4. an = (−1)n n

n + 1

In exercises 5–10, (a) find the limit of each sequence and (b) plot
the sequence on a calculator or CAS.

5. an = 1

n3
6. an = 2

n2

7. an = n

n + 1
8. an = 2n + 1

n

9. an = 2√
n

10. an = 4√
n + 1

In exercises 11–30, determine whether the sequence converges
or diverges. If it converges, determine the limit.

11. an = 3n2 + 1

2n2 − 1
12. an = 5n3 − 1

2n3 + 1

13. an = n2 + 1

n + 1
14. an = n2 + 1

n3 + 1

15. an = n + 2

3n − 1
16. an = n + 4

n + 1

17. an = (−1)n n + 2

3n − 1
18. an = (−1)n n + 4

n + 1

19. an = (−1)n n + 2

n2 + 4
20. an = (−1)n 4

n + 1
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21. an = cos πn 22. an = sin πn

23. an = ne−n 24. an = cos n

en

25. an = en + 2

e2n − 1
26. an = e2n

en + 1

27. an = 3n

en + 1
28. an = n2n

3n

29. an = cos n

n!
30. an = n!

2n

In exercises 31–34, use the Squeeze Theorem and Corollary 1.1
to prove that the sequence converges to 0 (given that lim

n→∞
1
n ���

lim
n→∞

1
n2 ��� 0).

31. an = cos n

n2
32. an = cos nπ

n2

33. an = (−1)n e−n

n
34. an = (−1)n ln n

n2

In exercises 35–42, determine whether the sequence is increas-
ing, decreasing or neither.

35. an = n + 3

n + 2
36. an = n − 1

n + 1

37. an = en

n
38. an = n

2n

39. an = 2n

(n + 1)!
40. an = 3n

(n + 2)!

41. an = 10n

n!
42. an = n!

5n

In exercises 43–46, show that the sequence is bounded.

43. an = 3n2 − 2

n2 + 1
44. an = 6n − 1

n + 3

45. an = sin (n2)

n + 1
46. an = e1/n

47. Numerically estimate the limits of the sequences an =(
1 + 1

n

)n
and bn = (

1 − 1
n

)n
. Compare the answers to e and

e−1.

48. Numerically estimate the limits of the sequences an =(
1 + 2

n

)n
and bn = (

1 − 2
n

)n
. Compare the answers to e2 and

e−2.

49. Given that lim
n→∞

(
1 + 1

n

)n = e, show that lim
n→∞

(
1 + r

n

)n = er

for any constant r . (Hint: Make the substitution n = rm.)

50. Evaluate lim
n→∞

(n + 1)n

nn
and lim

n→∞
(n + 1)n+1

nn
.

51. Numerically estimate the limit of the sequence defined by

a1 = √
2, a2 =

√
2
√

2, a3 =
√

2
√

2
√

2, and so on.

52. To verify your conjecture from exercise 51, note that the terms
form the pattern a2 = √

2a1, a3 = √
2a2, and so on. If the

sequence converges, then an+1 ≈ an or
√

2an ≈ an . Solve the
equation

√
2a = a to determine the values at which this can

happen.

53. Find all values of p such that the sequence an = 1

pn
converges.

54. Find all values of p such that the sequence an = 1

n p
converges.

55. A packing company works with 12′′ square boxes. Show that
for n = 1, 2, 3, . . . , a total of n2 disks of diameter 12

n

′′
fit into

a box. Let an be the wasted area in a box with n2 disks. Com-
pute an .

56. The pattern of a sequence can’t always be determined from the
first few terms. Start with a circle, pick two points on the circle
and connect them with a line segment. The circle is divided into
a1 = 2 regions. Add a third point, connect all points and show
that there are now a2 = 4 regions. Add a fourth point, connect
all points and show that there are a3 = 8 regions. Is the pattern
clear? Show that a4 = 16 and then compute a5 for a surprise!

57. You have heard about the “population explosion.” The follow-
ing dramatic warning is adapted from the article “Doomsday:
Friday 13 November 2026” by Foerster, Mora and Amiot in
Science (Nov. 1960). Start with a0 = 3.049 to indicate that the
world population in 1960 was approximately 3.049 billion.
Then compute a1 = a0 + 0.005a2.01

0 to estimate the popula-
tion in 1961. Compute a2 = a1 + 0.005a2.01

1 to estimate the
population in 1962, then a3 = a2 + 0.005a2.01

2 for 1963, and
so on. Continue iterating and compare your calculations to the
actual populations in 1970 (3.721 billion), 1980 (4.473 billion)
and 1990 (5.333 billion). Then project ahead to the year 2035.
Frightening, isn’t it?

58. The so-called hailstone sequence is defined by

xk =
{

3xk−1 + 1 if xk−1 is odd
1
2 xk−1 if xk−1 is even

.

If you start with x1 = 2n for some positive integer n, show
that xn+1 = 1. The question (an unsolved research problem) is
whether you eventually reach 1 from any starting value. Try
several odd values for x1 and show that you always reach 1.

59. A different population model was studied by Fibonacci, an
Italian mathematician of the thirteenth century. He imagined
a population of rabbits starting with a pair of newborns. For
one month, they grow and mature. The second month, they
have a pair of newborn baby rabbits. We count the number of
pairs of rabbits. Thus far, a0 = 1, a1 = 1 and a2 = 2. The rules
are: adult rabbit pairs give birth to a pair of newborns every
month, newborns take one month to mature and no rabbits die.
Show that a3 = 3, a4 = 5 and in general an = an−1 + an−2.
This sequence of numbers, known as the Fibonacci sequence,
occurs in an amazing number of applications.

60. In this exercise, we visualize the Fibonacci sequence. Start with
two squares of side 1 placed next to each other (see Figure A).
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Place a square on the long side of the resulting rectangle (see
Figure B); this square has side 2. Continue placing squares on
the long sides of the rectangles: a square of side 3 is added
in Figure C, then a square of side 5 is added to the bottom of
Figure C, and so on.

FIGURE A FIGURE B FIGURE C

Argue that the sides of the squares are determined by the
Fibonacci sequence of exercise 59.

61. Start with two circles C1 and C2 of radii r1 and r2, respec-
tively, that are tangent to each other and each tangent to the
x-axis. Construct the circle C3 that is tangent to C1, C2 and the
x-axis. (See the figure.) If the centers of C1 and C2 are (c1, r1)
and (c2, r2), respectively, show that (c2 − c1)2 + (r2 − r1)2 =
(r1 + r2)2 and then |c2 − c1| = 2

√
r1r2. Find similar relation-

ships for circles C1 and C3 and for circles C2 and C3. Show

that the radius r3 of C3 is given by
√

r3 =
√

r1r2√
r1 + √

r2
.

y

x

62. In exercise 61, construct a sequence of circles where C4 is
tangent to C2, C3 and the x-axis. Then, C5 is tangent to C3, C4

and the x-axis. If you start with unit circles r1 = r2 = 1, find
a formula for the radius rn in terms of Fn, the nth term in the
Fibonacci sequence of exercises 59 and 60.

63. Let C be the circle of radius r inscribed in the parabola y = x2.
(See the figure.) Show that for r > 1/2 the y-coordinate c of
the center of the circle equals c = 1

4 + r 2.

y

x
1

1

2

4

3

2�2 �1

64. In exercise 63, let C1 be the circle of radius r1 = 1 inscribed
in y = x2. Construct a sequence of circles C2, C3 and so on,
where each circle Cn rests on top of the previous circle Cn−1

(that is, Cn is tangent to Cn−1) and is inscribed in the parabola.
If rn is the radius of circle Cn, find a (simple) formula for rn .

65. Determine whether the sequence an = n
√

n converges or di-
verges. (Hint: Use n1/n = e(1/n) ln n .)

66. Suppose that a1 = 1 and an+1 = 1
2

(
an + 4

an

)
. Show numer-

ically that the sequence converges to 2. To find this limit
analytically, let L = lim

n→∞
an+1 = lim

n→∞
an and solve the equa-

tion L = 1
2

(
L + 4

L

)
.

67. As in exercise 66, determine the limit of the sequence defined

by a1 = 1, an+1 = 1
2

(
an + c

an

)
for c > 0 and an > 0.

EXPLORATORY EXERCISES

1. Suppose that a ball is launched from the ground with initial ve-
locityv. Ignoring air resistance, it will rise to a height ofv2/(2g)
and fall back to the ground at time t = 2v/g. Depending on how
“lively” the ball is, the next bounce will only rise to a fraction of
the previous height. The coefficient of restitution r, defined as
the ratio of landing velocity to rebound velocity, measures the
liveliness of the ball. The second bounce has launch velocity
rv, the third bounce has launch velocity r 2v and so on. It might
seem that the ball will bounce forever. To see that it does not, ar-
gue that the time to complete two bounces is a2 = 2v

g (1 + r ),

the time to complete three bounces is a3 = 2v

g (1 + r + r 2),
and so on. Take r = 0.5 and numerically determine the limit
of this sequence. (We study this type of sequence in detail in
section 7.2.) In particular, show that (1 + 0.5) = 3

2 , (1 + 0.5 +
0.52) = 7

4 and (1 + 0.5 + 0.52 + 0.53) = 15
8 , find a general ex-

pression for an and determine the limit of the sequence. Argue
that at the end of this amount of time, the ball has stopped
bouncing.

2. A surprising follow-up to the bouncing ball problem of ex-
ercise 1 is found in An Experimental Approach to Nonlinear
Dynamics and Chaos by Tufillaro, Abbott and Reilly. Suppose
the ball is bouncing on a moving table that oscillates up and
down according to the equation A cos ωt for some amplitude
A and frequency ω. Without the motion of the table, the ball
will quickly reach a height of 0 as in exercise 1. For different
values of A and ω, however, the ball can settle into an amazing
variety of patterns. To understand this, explain why the colli-
sion between table and ball could subtract or add velocity to
the ball (What happens if the table is going up? down?). A sim-
plified model of the velocity of the ball at successive collisions
with the table is vn+1 = 0.8vn − 10 cos (v0 + v1 + · · · + vn).
Starting with v0 = 5, compute v1, v2, . . . ,v15. In this case, the
ball never settles into a pattern; its motion is chaotic.
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7.2 INFINITE SERIES

Recall that we write the decimal expansion of 1
3 as the repeating decimal

1

3
= 0.33333333,

where we understand that the 3s in this expansion go on for ever and ever. An alternative
way to think of this is as

1

3
= 0.3 + 0.03 + 0.003 + 0.0003 + 0.00003 + · · ·

= 3(0.1) + 3(0.1)2 + 3(0.1)3 + 3(0.1)4 + · · · + 3(0.1)k + · · · . (2.1)

For convenience, we write (2.1) using summation notation as

1

3
=

∞∑
k=1

[3(0.1)k]. (2.2)

But, what exactly could we mean by the infinite sum indicated in (2.2)? Of course, you
can’t add infinitely many things together. (You can only add two things at a time.) By this
expression, we mean that as you add together more and more terms, the sum gets closer
and closer to 1

3 .
In general, for any sequence {ak}∞k=1, suppose we start adding the terms together. We

define the individual sums by

S1 = a1,

S2 = a1 + a2 = S1 + a2,

S3 = a1 + a2︸ ︷︷ ︸
S2

+ a3 = S2 + a3,

S4 = a1 + a2 + a3︸ ︷︷ ︸
S3

+ a4 = S3 + a4, (2.3)

...
Sn = a1 + a2 + · · · + an−1︸ ︷︷ ︸

Sn−1

+ an = Sn−1 + an (2.4)

and so on. We refer to Sn as the nth partial sum. Note that we can compute any one of
these as the sum of two numbers: the nth term, an and the previous partial sum, Sn−1, as
indicated in (2.4).

For instance, for the sequence

{
1

2k

}∞

k=1

, consider the partial sums

S1 = 1

2
,

S2 = 1

2
+ 1

22
= 3

4
,

S3 = 3

4
+ 1

23
= 7

8
,

S4 = 7

8
+ 1

24
= 15

16
,
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and so on. Look at these carefully and you might notice that S2 = 3

4
= 1 − 1

22
, S3 = 7

8
=

1 − 1

23
, S4 = 15

16
= 1 − 1

24
and so on, so that Sn = 1 − 1

2n
, for each n = 1, 2, . . . . If we

were to consider the convergence or divergence of the sequence {Sn}∞n=1 of partial sums,
observe that we now have

lim
n→∞ Sn = lim

n→∞

(
1 − 1

2n

)
= 1.

Think about what this says: as we add together more and more terms of the sequence{
1

2k

}∞

k=1

, the partial sums are drawing closer and closer to 1. In this instance, we write

∞∑
k=1

1

2k
= 1. (2.5)

It’s very important to understand what’s going on here. This new mathematical object,
∞∑

k=1

1

2k
is called a series (or infinite series). It is not a sum in the usual sense of the word,

but rather, the limit of the sequence of partial sums. Equation (2.5) says that as we add
together more and more terms, the sums are approaching the limit of 1.

In general, for any sequence, {ak}∞k=1 , we can write down the series

a1 + a2 + · · · + ak + · · · =
∞∑

k=1

ak .

If the sequence of partial sums Sn =
n∑

k=1
ak converges (to some number S), then we say that

the series
∞∑

k=1
ak converges (to S). We write

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞ Sn = S.Definition of infinite series

In this case, we call S the sum of the series. On the other hand, if the sequence of
partial sums, {Sn}∞n=1 diverges (i.e., lim

n→∞ Sn does not exist), then we say that the series

diverges.

EXAMPLE 2.1 A Convergent Series

Determine if the series
∞∑

k=1

1

2k
converges or diverges.

Solution From our work on the introductory example, observe that

∞∑
k=1

1

2k
= lim

n→∞

n∑
k=1

ak = lim
n→∞

(
1 − 1

2n

)
= 1.

In this case, we say that the series converges to 1. �

In example 2.2, we examine a simple divergent series.
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EXAMPLE 2.2 A Divergent Series

Investigate the convergence or divergence of the series
∞∑

k=1
k2.

Solution Here, we have the nth partial sum

Sn =
n∑

k=1

k2 = 12 + 22 + · · · + n2

and

lim
n→∞ Sn = lim

n→∞(12 + 22 + · · · + n2) = ∞.

Since the sequence of partial sums diverges, the series diverges also. �

Determining the convergence or divergence of a series is only rarely as simple as it was
in examples 2.1 and 2.2.

EXAMPLE 2.3 A Series with a Simple Expression for the
Partial Sums

Investigate the convergence or divergence of the series
∞∑

k=1

1

k(k + 1)
.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

Sn

FIGURE 7.16

Sn =
n∑

k=1

1

k(k + 1)
.

Solution In Figure 7.16, we have plotted the first 20 partial sums. In the accompanying
table, we list a number of partial sums of the series.

From both the graph and the table, it appears that the partial sums are approaching
1, as n → ∞. However, we must urge caution. It is extremely difficult to look at a graph
or a table of any finite number of the partial sums and decide whether a given series is
converging or diverging. In the present case, we are fortunate that we can find a simple
expression for the partial sums. We leave it as an exercise to find the partial fractions
decomposition of the general term of the series

1

k(k + 1)
= 1

k
− 1

k + 1
. (2.6)

n Sn ���
n∑

k���1

1
k(k ��� 1)

10 0.90909091

100 0.99009901

1000 0.999001

10,000 0.99990001

100,000 0.99999

1 × 106 0.999999

1 × 107 0.9999999

Now, consider the nth partial sum. From (2.6), we have

Sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)

=
(

1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · +

(
1

n − 1
− 1

n

)
+

(
1

n
− 1

n + 1

)
.

Notice how nearly every term in the partial sum is canceled by another term in the sum
(the next term). For this reason, such a sum is referred to as a telescoping (or collapsing)
sum. We now have

Sn = 1 − 1

n + 1

and so,

lim
n→∞ Sn = lim

n→∞

(
1 − 1

n + 1

)
= 1.

This says that the series converges to 1, as conjectured from the graph and the table. �
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It is relatively rare that we know the sum of a convergent series exactly. Usually, we
must test a series for convergence using some indirect method and then approximate the
sum by calculating some partial sums. We now consider one additional type of series whose

sum is known exactly. The series we considered in example 2.1,
∞∑

k=1

1

2k
, is an example of a

type of series called geometric series. We prove a general result in Theorem 2.1.

THEOREM 2.1

For a 	= 0, the geometric series
∞∑

k=0
ark converges to

a

1 − r
if |r | < 1 and diverges if

|r | ≥ 1. (Here, r is referred to as the ratio.)

PROOF

The proof relies on a clever observation. Note that the first term of the series corresponds
to k = 0 and so, the nth partial sum (the sum of the first n terms) is

Sn = a + ar1 + ar2 + · · · + arn−1. (2.7)

Multiplying (2.7) by r , we get

r Sn = ar1 + ar2 + ar3 + · · · + arn. (2.8)

Subtracting (2.8) from (2.7), we get

(1 − r )Sn = (a + ar1 + ar2 + · · · + arn−1) − (ar1 + ar2 + ar3 + · · · + arn)

= a − arn = a(1 − rn).

Dividing both sides by (1 − r ) gives us

Sn = a(1 − rn)

1 − r
.

If |r | < 1, notice that rn → 0 as n → ∞ and so,

lim
n→∞ Sn = lim

n→∞
a(1 − rn)

1 − r
= a

1 − r
.

We leave it as an exercise to show that if |r | ≥ 1, lim
n→∞ Sn does not exist.

EXAMPLE 2.4 A Convergent Geometric Series

Investigate the convergence or divergence of the series
∞∑

k=2
5

(
1

3

)k

.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

Sn

FIGURE 7.17

Sn =
n+1∑
k=2

5 ·
(

1

3

)k

.

Solution The first 20 partial sums are plotted in Figure 7.17. It appears from the
graph that the sequence of partial sums is converging to some number around 0.8.
Further evidence is found in the following table, showing a number of partial sums.

The table suggests that the series converges to approximately 0.83333333. Again,
we must urge caution. Graphical and numerical evidence can be very misleading when
examining series. Some sequences and series converge (or diverge) far too slowly to
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n Sn ���
n�1∑
k���2

5
(

1
3

)k

1 0.55555556

2 0.74074074

3 0.80246914

4 0.82304527

5 0.82990398

n Sn ���
n�1∑
k���2

5
(

1
3

)k

10 0.83331922

13 0.83333281

16 0.83333331

19 0.83333333

20 0.83333333

observe graphically or numerically. You must always confirm your suspicions with careful
mathematical analysis. In the present case, note that while the series is not quite written
in the usual form, it is a geometric series, as follows:

∞∑
k=2

5

(
1

3

)k

= 5

(
1

3

)2

+ 5

(
1

3

)3

+ 5

(
1

3

)4

+ · · · + 5

(
1

3

)n

+ · · ·

= 5

(
1

3

)2
[

1 + 1

3
+

(
1

3

)2

+ · · ·
]

=
∞∑

k=0

{
5

(
1

3

)2 (
1

3

)k
}

.

You can now see that this is a geometric series with ratio r = 1
3 and a = 5

(
1
3

)2
. Further,

since

|r | = 1

3
< 1,

we have from Theorem 2.1 that the series converges to

a

1 − r
= 5

(
1
3

)2

1 − (
1
3

) =
(

5
9

)(
2
3

) = 5

6
= 0.83333333,

which is consistent with the graph and the table of partial sums. �

EXAMPLE 2.5 A Divergent Geometric Series

Investigate the convergence or divergence of the series
∞∑

k=0
6

(
−7

2

)k

.

Solution A graph showing the first 20 partial sums (see Figure 7.18) is not particularly
helpful, until you look at the vertical scale. The following table showing the values of
the first 10 partial sums is more revealing.

�1.0 � 1011

�1.5 � 1011

�0.5 � 1011

0.5 � 1011

Sn

n
2015105

FIGURE 7.18

Sn =
n−1∑
k=0

6 ·
(

−7

2

)k

.

n Sn ���
n−1∑
k ��� 0

6
(

−−− 7
2

)k

1 6

2 −15

3 58.5

4 −198.75

5 701.63

n Sn ���
n−1∑
k ��� 0

6
(

−−− 7
2

)k

6 −2449.7

7 8579.9

8 −30,024

9 1.05×105

10 −3.68×105
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Note that while the partial sums are oscillating back and forth between positive and
negative values, they are growing larger and larger in absolute value. We can confirm our
suspicions by observing that this is a geometric series with ratio r = − 7

2 . Since

|r | =
∣∣∣∣−7

2

∣∣∣∣ = 7

2
≥ 1,

the series is divergent, as we suspected. �

You will find that determining whether a series is convergent or divergent usually
involves a lot of hard work. The simple observation in Theorem 2.2 provides us with a very
useful test.

THEOREM 2.2

If
∞∑

k=1
ak converges, then lim

k→∞
ak = 0.

PROOF

Suppose that
∞∑

k=1
ak converges to some number L . This means that the sequence of partial

sums defined by Sn =
n∑

k=1
ak also converges to L . Notice that

Sn =
n∑

k=1

ak =
n−1∑
k=1

ak + an = Sn−1 + an.

Subtracting Sn−1 from both sides, we have

an = Sn − Sn−1.

This gives us

lim
n→∞ an = lim

n→∞(Sn − Sn−1) = lim
n→∞ Sn − lim

n→∞ Sn−1 = L − L = 0,

as desired.

The following very useful test follows directly from Theorem 2.2.

kTH-TERM TEST FOR DIVERGENCE

If lim
k→∞

ak 	= 0, then the series
∞∑

k=1
ak diverges.

The kth-term test is so simple, you should use it to test every series you consider. It says
that if the terms don’t tend to zero, the series is divergent and there’s nothing more to do.
However, as we’ll soon see, if the terms do tend to zero, there is no guarantee that the series
converges and additional testing is needed.
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EXAMPLE 2.6 A Series Whose Terms Do Not Tend to Zero

Investigate the convergence or divergence of the series
∞∑

k=1

k

k + 1
.

105 15 20

5

10

15

20

Sn

n

FIGURE 7.19

Sn =
n∑

k=1

k

k + 1
.

Solution A graph showing the first 20 partial sums is shown in Figure 7.19. The partial
sums appear to be increasing without bound as n increases. A table of values would
indicate the same sort of growth. (Try this!) We can resolve the question of convergence
quickly by observing that

lim
k→∞

k

k + 1
= 1 	= 0.

From the kth-term test for divergence, the series must diverge. �

Example 2.7 shows an important series whose terms tend to 0 as k → ∞, but that
diverges, nonetheless.

EXAMPLE 2.7 The Harmonic Series

Investigate the convergence or divergence of the harmonic series:
∞∑

k=1

1

k
.

CAUTION

The converse of Theorem 2.2 is
false. That is, having lim

k→∞
ak = 0

does not guarantee that the series
∞∑

k=1
ak converges. Be very clear

about this point. This is a very
common misconception.

Solution In Figure 7.20, we see the first 20 partial sums of the series. In the
following table, we display the first 20 partial sums. (You could do the same with the first
200 or 2000 partial sums and there would be little difference in your conclusion.) The
table and the graph suggest that the series might converge to a number around 3.6. As
always with sequences and series, we need to confirm this suspicion. From our test for
divergence, we have

lim
k→∞

ak = lim
k→∞

1

k
= 0.

n Sn ���
n∑

k���1

1
k

1 1

2 1.5

3 1.83333

4 2.08333

5 2.28333

6 2.45

7 2.59286

8 2.71786

9 2.82897

10 2.92897

n Sn ���
n∑

k���1

1
k

11 3.01988

12 3.10321

13 3.18013

14 3.25156

15 3.31823

16 3.38073

17 3.43955

18 3.49511

19 3.54774

20 3.59774

5 10 15 20

2

3

4

1

Sn

n

FIGURE 7.20

Sn =
n∑

k=1

1

k
.

Be careful: once again, this does not say that the series converges. If the limit had been
nonzero, we would have stopped and concluded that the series diverges. In the present
case, where the limit is 0, we can only conclude that further study is needed. (That is, the
series may converge, but we will need to investigate further.)

The following clever proof provides a preview of things to come. Consider the nth
partial sum

Sn =
n∑

k=1

1

k
= 1

1
+ 1

2
+ 1

3
+ · · · + 1

n
.
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Note that Sn corresponds to the sum of the areas of the n rectangles superimposed on the
graph of y = 1

x shown in Figure 7.21 for the case where n = 7.

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

1.2

y

x

FIGURE 7.21

y = 1

x
.

Notice that since each of the indicated rectangles lies partly above the curve, we have

Sn = Sum of areas of n rectangles

≥ Area under the curve =
∫ n+1

1

1

x
dx

= ln |x |
∣∣∣n+1

1
= ln (n + 1). (2.9)

However, the sequence {ln (n + 1)}∞n=1 diverges, as

lim
n→∞ ln (n + 1) = ∞.

Since Sn ≥ ln (n + 1), for all n [from (2.9)], we must also have that lim
n→∞ Sn = ∞. From

the definition of convergence of a series, we now have that
∞∑

k=1

1

k
diverges, too, even

though lim
k→∞

1

k
= 0.

�

We complete this section with several unsurprising results.

THEOREM 2.3

(i) If
∞∑

k=1
ak converges to A and

∞∑
k=1

bk converges to B, then the series
∞∑

k=1
(ak ± bk)

converges to A ± B and
∞∑

k=1
(cak) converges to cA, for any constant, c.

(ii) If
∞∑

k=1
ak converges and

∞∑
k=1

bk diverges, then
∞∑

k=1
(ak ± bk) diverges.

The proof of the theorem is left as an exercise.
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EXERCISES 7.2

WRITING EXERCISES

1. Suppose that your friend is confused about the difference be-
tween the convergence of a sequence and the convergence
of a series. Carefully explain the difference between conver-

gence or divergence of the sequence ak = k

k + 1
and the series

∞∑
k=1

k

k + 1
.

2. Explain in words why the kth term test for divergence is true.

Explain why it is not true that if lim
k→∞

ak = 0 then
∞∑

k=1
ak nec-

essarily converges. In your explanation, include an important
example that proves that this is not true and comment on the
fact that the convergence of ak to 0 can be slow or fast.

3. In Theorems 2.2 and 2.3, the series start at k = 1, as in
∞∑

k=1
ak .

Explain why the conclusions of the theorems hold if the series
starts at k = 2, or k = 3 or at any positive integer.

4. We emphasized in the text that numerical and graphical evi-
dence for the convergence of a series can be misleading. Sup-
pose your calculator carries 14 digits in its calculations. Explain
why for large enough values of n, the term 1

n will be too small

to change the partial sum
n∑

k=1

1

k
. Thus, the calculator would

incorrectly indicate that the harmonic series converges.

In exercises 1–24, determine if the series converges or diverges.
For convergent series, find the sum of the series.

1.
∞∑

k=0

3

(
1

5

)k

2.
∞∑

k=0

1

3
(5)k

3.
∞∑

k=0

1

2

(
−1

3

)k

4.
∞∑

k=0

4

(
1

2

)k

5.
∞∑

k=0

1

2
(3)k 6.

∞∑
k=0

5

(
−1

3

)k

7.
∞∑

k=1

4

k(k + 2)
8.

∞∑
k=1

4k

k + 2

9.
∞∑

k=1

3k

k + 4
10.

∞∑
k=1

9

k(k + 3)

11.
∞∑

k=1

2

k
12.

∞∑
k=0

4

k + 1

13.
∞∑

k=1

2k + 1

k2(k + 1)2
14.

∞∑
k=0

[e−k − e−(k+1)]

15.
∞∑

k=0

3−k 16.
∞∑

k=0

2e−k

17.
∞∑

k=0

(
1

2k
− 1

k + 1

)
18.

∞∑
k=0

(
1

2k
− 1

3k

)

19.
∞∑

k=0

(
2

3k
+ 1

2k

)
20.

∞∑
k=1

(
1

k
− 1

4k

)

21.
∞∑

k=0

(−1)k 3

2k
22.

∞∑
k=0

(−1)k+1 4

3k

23.
∞∑

k=0

(−1)k+1 3k

k + 1
24.

∞∑
k=0

(−1)k k3

k2 + 1

In exercises 25–30, use graphical and numerical evidence to con-
jecture the convergence or divergence of the series.

25.
∞∑

k=1

1

k2
26.

∞∑
k=1

1√
k

27.
∞∑

k=1

3

k!

28.
∞∑

k=1

2k

k
29.

∞∑
k=1

4k

k2
30.

∞∑
k=1

2k

k!

31. Prove that if
∞∑

k=1
ak converges, then

∞∑
k=m

ak converges for any

positive integer m. In particular, if
∞∑

k=1
ak converges to L , what

does
∞∑

k=m
ak converge to?

32. Prove that if
∞∑

k=1
ak diverges, then

∞∑
k=m

ak diverges for any posi-

tive integer m.

33. Prove Theorem 2.3 (i). 34. Prove Theorem 2.3 (ii).

35. Prove that if the series
∞∑

k=0
ak converges, then the series

∞∑
k=0

1

ak

diverges.

36. Prove that the partial sum Sn = 1 + 1
2 + 1

3 + · · · + 1
n does not

equal an integer for any prime n > 1. Is the statement true for
all integers n > 1?

37. The harmonic series is probably the single most important se-
ries to understand. In this exercise, we guide you through an-

other proof of the divergence of this series. Let Sn =
n∑

k=1

1

k
.

Show that S1 = 1 and S2 = 3
2 . Since 1

3 > 1
4 , we have 1

3 + 1
4 >

1
4 + 1

4 = 1
2 . Therefore, S4 > 3

2 + 1
2 = 2. Similarly, 1

5 + 1
6 +

1
7 + 1

8 > 1
8 + 1

8 + 1
8 + 1

8 = 1
2 , so S8 > 5

2 . Show that S16 > 3

and S32 > 7
2 . For which n can you guarantee that Sn > 4?

Sn > 5? For any positive integer m, determine n such that
Sn > m. Conclude that the harmonic series diverges.

38. Compute several partial sums of the series 1 − 1 + 1 − 1 +
1 − 1 + · · ·. Argue that the limit of the sequence of partial sums
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does not exist, so that the series diverges. Also, write this series
as a geometric series and use Theorem 2.1 to conclude that the
series diverges. Finally, use the kth-term test for divergence to
conclude that the series diverges.

39. Write 0.99999 = 0.9 + 0.09 + 0.009 + · · · and sum the geo-
metric series to prove that 0.99999 = 1.

40. As in exercise 39, prove that 0.199999 = 0.2.

41. Suppose you have n boards of length L . Place the first board
with length L

2n hanging over the edge of the table. Place the
next board with length L

2(n−1) hanging over the edge of the first

board. The next board should hang L
2(n−2) over the edge of the

second board. Continuing on until the last board hangs L
2 over

the edge of the (n − 1)st board. Theoretically, this stack will
balance. (In practice, don’t use quite as much overhang.) With
n = 8, compute the total overhang of the stack. Determine the
number of boards n such that the total overhang is greater than
L . This means that the last board is entirely beyond the edge
of the table. What is the limit of the total overhang as n → ∞?

L
2

L
4

. . .

42. Have you ever felt that the line you’re standing in moves more
slowly than the other lines? In An Introduction to Probabil-
ity Theory and Its Applications, William Feller proved just
how bad your luck is. Let N be the number of people who
get in line until someone waits longer than you do. (You’re
the first, so N ≥ 2.) The probability that N = k is given by

p(k) = 1

k(k − 1)
. Prove that the total probability equals 1;

that is,
∞∑

k=2

1

k(k − 1)
= 1. From probability theory, the average

(mean) number of people who must get in line before someone

has waited longer than you is given by
∞∑

k=2
k

1

k(k − 1)
. Prove

that this diverges to ∞. Talk about bad luck!

43. If 0 < r < 1
2 , show that 1 + 2r + 4r 2 + · · · + (2r )n + · · · =

1

1 − 2r
. Replace r with

1

1000
and discuss what’s interesting

about the decimal representation of
500

499
.

44. In exploratory exercise 1 of section 7.1, you showed that a par-
ticular bouncing ball takes 2 seconds to complete its infinite
number of bounces. In general, the total time it takes for a ball

to complete its bounces is
2v

g

∞∑
k=0

rk and the total distance the

ball moves is
v2

g

∞∑
k=0

r 2k . Assuming 0 < r < 1, find the sums

of these geometric series.

45. To win a deuce tennis game, one player or the other must win
the next two points. If each player wins one point, the deuce
starts over. If you win each point with probability p, the prob-
ability that you win the next two points is p2. The probability
that you win one of the next two points is 2p(1 − p). The prob-
ability that you win a deuce game is then p2 + 2p(1 − p)p2 +
[2p(1 − p)]2 p2 + [2p(1 − p)]3 p2 + · · · . Explain what each
term represents, explain why the geometric series converges
and find the sum of the series. If p = 0.6, you’re a better player
than your opponent. Show that you are more likely to win a
deuce game than you are a single point. The slightly strange
scoring rules in tennis make it more likely that the better player
wins.

46. On an analog clock, at 1:00 the minute hand points to 12 and
the hour hand points to 1. When the minute hand reaches 1,
the hour hand has progressed to 1 + 1

12 . When the minute hand
reaches 1 + 1

12 , the hour hand has moved to 1 + 1
12 + 1

122 . Find
the sum of a geometric series to determine the time at which
the minute hand and hour hand are in the same location.

47. Two bicyclists are 40 miles apart, riding toward each other at
20 mph (each). A fly starts at one bicyclist and flies toward the
other bicyclist at 60 mph. When it reaches the bike, it turns
around and flies back to the first bike. It continues flying back
and forth until the bikes meet. Determine the distance flown on
each leg of the fly’s journey and find the sum of the geometric
series to get the total distance flown. Verify that this is the right
answer by solving the problem the easy way.

48. In this exercise, we will find the present value of a plot of
farmland. Assume that a crop of value $c will be planted in
years 1, 2, 3, and so on, and the yearly inflation rate is r . The
present value is given by

P = ce−r + ce−2r + ce−3r + · · · .
Find the sum of the geometric series to compute the present
value.

49. Suppose $100,000 of counterfeit money is introduced into the
economy. Each time the money is used, 25% of the remaining
money is identified as counterfeit and removed from circula-
tion. Determine the total amount of counterfeit money success-
fully used in transactions. This is an example of the multiplier
effect in economics.

50. In exercise 49, suppose that a new marking scheme on dollar
bills helps raise the detection rate to 40%. Determine the re-
duction in the total amount of counterfeit money successfully
spent.

51. A dosage d of a drug is given at times t = 0, 1, 2, . . . . The
drug decays exponentially with rate r in the bloodstream. The
amount in the bloodstream after n + 1 doses is d + de−r +
de−2r + · · · + de−nr . Show that the eventual level of the drug
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(after an “infinite” number of doses) is
d

1 − e−r
. If r = 0.1,

find the dosage needed to maintain a drug level of 2.

52. The Cantor set is one of the most famous sets in mathe-
matics. To construct the Cantor set, start with the interval
[0, 1]. Then remove the middle third,

(
1
3 , 2

3

)
. This leaves the

set
[
0, 1

3

] ∪ [
2
3 , 1

]
. For each of the two subintervals, remove

the middle third; in this case, remove the intervals
(

1
9 , 2

9

)
and(

7
9 , 8

9

)
. Continue in this way, removing the middle thirds of

each remaining interval. The Cantor set is all points in [0, 1]
that are not removed. Argue that 0, 1, 1

3 and 2
3 are in the Cantor

set, and identify four more points in the set. It can be shown
that there are an infinite number of points in the Cantor set. On
the other hand, the total length of the subintervals removed is
1
3 + 2

(
1
9

) + · · ·. Find the third term in this series, identify the
series as a convergent geometric series and find the sum of the
series. Given that you started with an interval of length 1, how
much “length” does the Cantor set have?

53. Give an example where
∞∑

k=1
ak and

∞∑
k=1

bk both diverge but

∞∑
k=1

(ak + bk) converges.

54. If
∞∑

k=0
ak converges and

∞∑
k=0

bk diverges, is it necessarily true that

∞∑
k=0

(ak + bk) diverges?

EXPLORATORY EXERCISES

1. Infinite products are also of great interest to mathemati-
cians. Numerically explore the convergence or divergence of
the infinite product

(
1 − 1

4

) (
1 − 1

9

) (
1 − 1

25

) (
1 − 1

49

) · · · =∏
p=prime

(
1 − 1

p2

)
. Note that the product is taken over the prime

numbers, not all integers. Compare your results to the number
6

π2
.

2. In example 2.7, we showed that 1 + 1
2 + 1

3 + · · · + 1
n >

ln (n + 1). Superimpose the graph of f (x) = 1
x−1 onto

Figure 7.21 and show that 1
2 + 1

3 + · · · + 1
n < ln (n). Con-

clude that ln (n + 1) < 1 + 1
2 + 1

3 + · · · + 1
n < 1 + ln (n).

Euler’s constant is defined by

γ = lim
n→∞

[
1 + 1

2
+ 1

3
+ · · · + 1

n
− ln (n)

]
.

Look up the value of γ . (Hint: Use your CAS.) Use γ to

estimate
n∑

i=1

1

i
for n = 10,000 and n = 100,000. Investigate

whether or not the sequence an =
2n∑

k=n

1

k
converges.

7.3 THE INTEGRAL TEST AND COMPARISON TESTS

As we have observed a number of times now, we are usually unable to determine the sum of
a convergent series. In fact, for most series we cannot determine whether they converge or
diverge by simply looking at the sequence of partial sums. Most of the time, we will need to
test a series for convergence in some indirect way. If we find that the series is convergent, we
can then approximate its sum by numerically computing some partial sums. In this section,
we will develop additional tests for convergence of series. The first of these is a generalization
of the method we used to show that the harmonic series was divergent in section 7.2.

For a given series
∞∑

k=1
ak , suppose that there is a function f for which

f (k) = ak, for k = 1, 2, . . . ,

where f is continuous, decreasing and f (x) ≥ 0 for all x ≥ 1. We consider the nth partial sum

Sn =
n∑

k=1

ak = a1 + a2 + · · · + an.

y

1 4 n32
x

(2, a2)
(3, a3)

(n, an)

y � f (x)

FIGURE 7.22
(n − 1) rectangles, lying beneath
the curve.

Look carefully at Figure 7.22. We have constructed (n − 1) rectangles on the interval [1, n],
each of width 1 and with height equal to the value of the function at the right-hand endpoint
of the subinterval on which the rectangle is constructed. Notice that since each rectangle
lies completely beneath the curve, the sum of the areas of the (n − 1) rectangles shown is
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less than the area under the curve from x = 1 to x = n. That is,

0 ≤ Sum of areas of (n − 1) rectangles ≤ Area under the curve =
∫ n

1
f (x) dx . (3.1)

Note that the area of the first rectangle is length × width = (1)(a2), the area of the second
rectangle is (1)(a3) and so on. We get that the sum of the areas of the (n − 1) rectangles
indicated in Figure 7.22 is

a2 + a3 + a4 + · · · + an = Sn − a1,

since

Sn = a1 + a2 + · · · + an.

Together with (3.1), this gives us

0 ≤ Sum of areas of (n − 1) rectangles

= Sn − a1 ≤ Area under the curve =
∫ n

1
f (x) dx . (3.2)

Now, suppose that the improper integral
∫ ∞

1 f (x) dx converges. Then, from (3.2), we
have

0 ≤ Sn − a1 ≤
∫ n

1
f (x) dx ≤

∫ ∞

1
f (x) dx .

Adding a1 to all the terms gives us

a1 ≤ Sn ≤ a1 +
∫ ∞

1
f (x) dx .

y

1 4 n32
x

y � f (x)

(1, a1)

(2, a2)

(n � 1, an�1)

FIGURE 7.23
(n − 1) rectangles, partially above
the curve.

This says that the sequence of partial sums {Sn}∞n=1 is bounded. Since {Sn}∞n=1 is also

monotonic (Why is that?), {Sn}∞n=1 is convergent by Theorem 1.4 and so, the series
∞∑

k=1
ak

is also convergent.

HISTORICAL NOTES
Colin Maclaurin (1698–1746)
Scottish mathematician who
discovered the Integral Test.
Maclaurin was one of the founders
of the Royal Society of Edinburgh
and was a pioneer in the
mathematics of actuarial studies.
The Integral Test was introduced
in a highly influential book that
also included a new treatment of
an important method for finding
series of functions. Maclaurin
series, as we now call them, are
developed in section 7.7.

In Figure 7.23, we have constructed (n − 1) rectangles on the interval [1, n], each of
width 1, but with height equal to the value of the function at the left-hand endpoint of the
subinterval on which the rectangle is constructed. In this case, the sum of the areas of the
(n − 1) rectangles shown is greater than the area under the curve. That is,

0 ≤ Area under the curve =
∫ n

1
f (x) dx

≤ Sum of areas of (n − 1) rectangles. (3.3)

Further, note that the area of the first rectangle is length × width = (1)(a1), the area of
the second rectangle is (1)(a2) and so on. We get that the sum of the areas of the (n − 1)
rectangles indicated in Figure 7.23 is

a1 + a2 + · · · + an−1 = Sn−1.

Together with (3.3), this gives us

0 ≤ Area under the curve =
∫ n

1
f (x) dx

≤ Sum of areas of (n − 1) rectangles = Sn−1. (3.4)

Now, suppose that the improper integral
∫ ∞

1 f (x) dx diverges. Since f (x) ≥ 0, this says that
lim

n→∞
∫ n

1 f (x) dx = ∞. From (3.4), we have that∫ n

1
f (x) dx ≤ Sn−1.
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This says that

lim
n→∞ Sn−1 = ∞,

also. So, the sequence of partial sums {Sn}∞n=1 diverges and hence, the series
∞∑

k=1
ak diverges,

too.
We summarize the results of this analysis in Theorem 3.1.

THEOREM 3.1 (Integral Test)

If f (k) = ak for each k = 1, 2, . . . and f is continuous, decreasing and f (x) ≥ 0, for

x ≥ 1, then
∫ ∞

1 f (x) dx and
∞∑

k=1
ak either both converge or both diverge.

It is important to recognize that while the Integral Test might say that a given series and
improper integral both converge, it does not say that they will converge to the same thing.
In fact, this is generally not true, as we see in example 3.1.

5 10 15 20

0.5

1.0

1.5

2.0

2.5

Sn

n

FIGURE 7.24

Sn =
n−1∑
k=0

1

k2 + 1
.

EXAMPLE 3.1 Using the Integral Test

Investigate the convergence or divergence of the series
∞∑

k=0

1

k2 + 1
.

Solution The graph of the first 20 partial sums shown in Figure 7.24 suggests that
the series converges to some value around 2. In the accompanying table (found in the
margin), you can find some selected partial sums. We have shown so many partial sums
due to the very slow rate of convergence of this series.

Based on our computations, we cannot say whether the series is converging very
slowly to a limit around 2.076 or whether the series is instead diverging very slowly, as
we saw earlier for the harmonic series. To determine which is the case, we must test the

series further. Define f (x) = 1

x2 + 1
. Note that f is continuous and positive everywhere

and f (k) = 1

k2 + 1
= ak, for all k ≥ 1. Further,

f ′(x) = (−1)(x2 + 1)
−2

(2x) < 0,

for x ∈ (0, ∞) and so, f is decreasing. This says that the Integral Test applies to this
series. So, we consider the improper integral∫ ∞

0

1

x2 + 1
dx = lim

R→∞

∫ R

0

1

x2 + 1
dx = lim

R→∞
tan−1 x

∣∣∣∣
R

0

= lim
R→∞

(tan−1 R − tan−1 0) = π

2
− 0 = π

2
.

n Sn ���
n−−−1∑
k���0

1
k2 ��� 1

10 1.97189

50 2.05648

100 2.06662

200 2.07166

500 2.07467

1000 2.07567

2000 2.07617

By the Integral Test, we have that since the improper integral converges, the series must
converge, also. Since we have now established that the series is convergent, we can use
our earlier calculations to arrive at the estimated sum 2.076. Notice that this is not the

same as the value of the corresponding improper integral, which is
π

2
≈ 1.5708.

�

In example 3.2, we discuss an important type of series.
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EXAMPLE 3.2 The p-Series

Determine for which values of p the series
∞∑

k=1

1

k p
(a p-series) converges.

Solution First, notice that for p = 1, this is the harmonic series, which diverges. For

p > 1, define f (x) = 1

x p
= x−p. Notice that for x ≥ 1, f is continuous and positive.

Further,

f ′(x) = −px−p−1 < 0,

so that f is decreasing for x ≥ 1. This says that the Integral Test applies.We now consider∫ ∞

1
x−p dx = lim

R→∞

∫ R

1
x−p dx = lim

R→∞
x−p+1

−p + 1

∣∣∣∣R

1

= lim
R→∞

(
R−p+1

−p + 1
− 1

−p + 1

)
= −1

−p + 1
. Since p > 1 implies that −p + 1 < 0.

In this case, the improper integral converges and so too, must the series. In the case where
p < 1, we leave it as an exercise to show that the series diverges. �

We summarize the result of example 3.2 as follows.

The p-series
∞∑

k=1

1

k p
converges if p > 1 and diverges if p ≤ 1.p-series

Notice that in examples 3.1 and 3.2, we were able to use the Integral Test to establish
the convergence of several series. So, now what? We have observed that you can use the
partial sums of a series to estimate its value, but just how precise is a given estimate? We
answer this question with the following result. First, if we estimate the sum S of the series
∞∑

k=1
ak by the nth partial sum Sn =

n∑
k=1

ak , we define the remainder Rn to be

Rn = S − Sn =
∞∑

k=1

ak −
n∑

k=1

ak =
∞∑

k=n+1

ak .

y

n
n � 1

x

(n � 1, an�1)

y � f (x)

FIGURE 7.25
Estimate of the remainder.

Notice that this says that the remainder is the error in approximating S by Sn . For any series
shown to be convergent by the Integral Test, we can estimate the size of the remainder, as
follows. From Figure 7.25, observe that the remainder Rn corresponds to the sum of the
areas of the indicated rectangles. Further, under the conditions of the Integral Test, this is
less than the area under the curve y = f (x). (Recall that this area is finite, as

∫ ∞
1 f (x) dx

converges.) This gives us the result in Theorem 3.2.

THEOREM 3.2 (Error Estimate for the Integral Test)

Suppose that f (k) = ak for all k = 1, 2, . . . , where f is continuous, decreasing and
f (x) ≥ 0 for all x ≥ 1. Further, suppose that

∫ ∞
1 f (x) dx converges. Then, the

remainder Rn satisfies

0 ≤ Rn =
∞∑

k=n+1

ak ≤
∫ ∞

n
f (x) dx .
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We can use Theorem 3.2 to estimate the error in using a partial sum to approximate the
sum of a series.

EXAMPLE 3.3 Estimating the Error in a Partial Sum

Estimate the error in using the partial sum S100 to approximate the sum of the series
∞∑

k=1

1

k3
.

Solution First, recall that in example 3.2, we had shown that this series (a p-series,
with p = 3) is convergent, by the Integral Test. From Theorem 3.2 then, the remainder
term satisfies

0 ≤ R100 ≤
∫ ∞

100

1

x3
dx = lim

R→∞

∫ R

100

1

x3
dx = lim

R→∞

(
− 1

2x2

)R

100

= lim
R→∞

( −1

2R2
+ 1

2(100)2

)
= 5 × 10−5.

�

A more interesting and far more practical question related to example 3.3 is to use
Theorem 3.2 to help us determine the number of terms of the series necessary to obtain a
given accuracy.

EXAMPLE 3.4 Finding the Number of Terms Needed
for a Given Accuracy

Determine the number of terms needed to obtain an approximation to the sum of the

series
∞∑

k=1

1

k3
correct to within 10−5.

Solution Again, we already used the Integral Test to show that the series in question
converges. Then, by Theorem 3.2, we have that the remainder satisfies

0 ≤ Rn ≤
∫ ∞

n

1

x3
dx = lim

R→∞

∫ R

n

1

x3
dx = lim

R→∞

(
− 1

2x2

)R

n

= lim
R→∞

( −1

2R2
+ 1

2n2

)
= 1

2n2
.

So, to ensure that the remainder is less than 10−5, we require

0 ≤ Rn ≤ 1

2n2
≤ 10−5.

Solving this last inequality for n yields

n2 ≥ 105

2
or n ≥

√
105

2
= 100

√
5 ≈ 223.6.

So, taking n ≥ 224 will guarantee the required accuracy and consequently, we have
∞∑

k=1

1

k3
≈

224∑
k=1

1

k3
≈ 1.202047, which is correct to within 10−5, as desired.

�
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Comparison Tests
We next present two results that will allow us to compare a given series with one that is
already known to be convergent or divergent, much as we did with improper integrals in
section 4.10.

THEOREM 3.3 (Comparison Test)

Suppose that 0 ≤ ak ≤ bk , for all k.

(i) If
∞∑

k=1
bk converges, then

∞∑
k=1

ak converges, too.

(ii) If
∞∑

k=1
ak diverges, then

∞∑
k=1

bk diverges, too.

Intuitively, this theorem should make abundant sense: if the “larger” series converges,
then the “smaller” one must also converge. Likewise, if the “smaller” series diverges, then
the “larger” one must diverge, too.

PROOF

Given that 0 ≤ ak ≤ bk for all k, observe that the nth partial sums of the two series satisfy

0 ≤ Sn = a1 + a2 + · · · + an ≤ b1 + b2 + · · · + bn.

(i) If
∞∑

k=1
bk converges (say to B), this says that

0 ≤ Sn ≤ a1 + a2 + · · · + an ≤ b1 + b2 + · · · + bn ≤
∞∑

k=1

bk = B, (3.5)

for all n ≥ 1. From (3.5), the sequence {Sn}∞n=1 of partial sums of
∞∑

k=1
ak is bounded. No-

tice that {Sn}∞n=1 is also increasing. (Why?) Since every bounded, monotonic sequence is

convergent (see Theorem 1.4), we get that
∞∑

k=1
ak is convergent, too.

(ii) If
∞∑

k=1
ak is divergent, we have (since all of the terms of the series are nonnegative) that

lim
n→∞(b1 + b2 + · · · + bn) ≥ lim

n→∞(a1 + a2 + · · · + an) = ∞.

Thus,
∞∑

k=1
bk must be divergent, also.

You can use the Comparison Test to test the convergence of series that look similar
to series that you already know are convergent or divergent (notably, geometric series or
p-series).

EXAMPLE 3.5 Using the Comparison Test for a Convergent Series

Investigate the convergence or divergence of
∞∑

k=1

1

k3 + 5k
.
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Solution From the graph of the first 20 partial sums shown in Figure 7.26, it appears
that the series converges to some value near 0.3. To confirm such a conjecture, we must
carefully test the series. Note that for large values of k, the general term of the series looks

like
1

k3
, since when k is large, k3 is much larger than 5k. This observation is significant,

since we already know that
∞∑

k=1

1

k3
is a convergent p-series (p = 3 > 1). Further, observe

that

1

k3 + 5k
≤ 1

k3
,

5 10 15 20

0.1

0.2

0.3

Sn

n

FIGURE 7.26

Sn =
n∑

k=1

1

k3 + 5k
.

for all k ≥ 1. Since
∞∑

k=1

1

k3
converges, the Comparison Test says that

∞∑
k=1

1

k3 + 5k
con-

verges, too. As with the Integral Test, although the Comparison Test tells us that both
series converge, the two series need not converge to the same sum. A quick calculation

of a few partial sums should convince you that
∞∑

k=1

1

k3
converges to approximately 1.202,

while
∞∑

k=1

1

k3 + 5k
converges to approximately 0.2798. (Note that this is consistent with

what we saw in Figure 7.26.) �

5 10 15 20

Sn

0.5 � 108

1.0 � 108

1.5 � 108

2.0 � 108

n

FIGURE 7.27

Sn =
n∑

k=1

5k + 1

2k − 1
.

EXAMPLE 3.6 Using the Comparison Test for a Divergent Series

Investigate the convergence or divergence of
∞∑

k=1

5k + 1

2k − 1
.

Solution From the graph of the first 20 partial sums seen in Figure 7.27, it appears
that the partial sums are growing very rapidly. On this basis, we would conjecture that
the series diverges. Of course, to verify this, we need further testing. Notice that for k

large, the general term looks like
5k

2k
=

(
5

2

)k

and we know that
∞∑

k=1

(
5

2

)k

is a divergent

geometric series

(
|r | = 5

2
> 1

)
. Further,

5k + 1

2k − 1
≥ 5k

2k − 1
≥ 5k

2k
=

(
5

2

)k

.

By the Comparison Test,
∞∑

k=1

5k + 1

2k − 1
diverges, too.

�

There are plenty of series whose general term looks like the general term of a familiar
series, but for which it is unclear how to get the inequality required for the Comparison Test
to go in the right direction.

EXAMPLE 3.7 A Comparison That Does Not Work

Investigate the convergence or divergence of the series
∞∑

k=3

1

k3 − 5k
.

Solution Note that this is nearly identical to example 3.5, except that there is a “−”
sign in the denominator instead of a “+” sign. The graph of the first 20 partial sums



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

PB480-07 PB480-Smith-v14.cls August 25, 2004 20:4

SECTION 7.3 The Integral Test and Comparison Tests 609

seen in Figure 7.28 looks somewhat similar to the graph in Figure 7.26, except that
the series appears to be converging to about 0.12. In this case, however, we have the
inequality

1

k3 − 5k
≥ 1

k3
, for all k ≥ 3.

5 10 15 20

0.04

0.08

0.12

0.16

Sn

n

FIGURE 7.28

Sn =
n∑

k=3

1

k3 − 5k
.

Unfortunately, this inequality goes the wrong way: we know that
∞∑

k=3

1

k3
is a convergent

p-series, but since
∞∑

k=3

1

k3 − 5k
is “larger” than this convergent series, the Comparison

Test says nothing. �

Think about what happened in example 3.7 this way: while you might observe that

k2 ≥ 1

k3
, for all k ≥ 1,

and you know that
∞∑

k=1

1

k3
is convergent, the Comparison Test says nothing about the “larger”

series
∞∑

k=1
k2. In fact, we know that this last series is divergent (by the kth-term test for

divergence, since lim
k→∞

k2 = ∞ 	= 0). To resolve this difficulty for the present problem, we

will need to either make a more appropriate comparison or use the Limit Comparison Test,
shown in Theorem 3.4.

NOTES
When we say lim

k→∞
ak

bk
= L > 0,

we mean that the limit exists and
is positive. In particular, we mean

that lim
k→∞

ak

bk
	= ∞.

THEOREM 3.4 (Limit Comparison Test)

Suppose that ak, bk > 0 and that for some (finite) value, L , lim
k→∞

ak

bk
= L > 0. Then,

either
∞∑

k=1
ak and

∞∑
k=1

bk both converge or they both diverge.

The proof of the Limit Comparison Test can be found in a more advanced text.
We can now use the Limit Comparison Test to test the series from example 3.7 whose

convergence we have so far been unable to confirm.

EXAMPLE 3.8 Using the Limit Comparison Test

Investigate the convergence or divergence of the series
∞∑

k=3

1

k3 − 5k
.

Solution Recall that we had already observed in example 3.7 that the general term

ak = 1

k3 − 5k
“looks like” bk = 1

k3
, for k large. We then consider the limit

lim
k→∞

ak

bk
= lim

k→∞

(
ak

1

bk

)
= lim

k→∞
1

(k3 − 5k)

1(
1
k3

) = lim
k→∞

1

1 − 5
k2

= 1 > 0.
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Since
∞∑

k=1

1

k3
is a convergent p-series (p = 3 > 1), the Limit Comparison Test says that

∞∑
k=1

1

k3 − 5k
is also convergent, as we had originally suspected. �

The Limit Comparison Test can be used to resolve convergence questions for a great
many series. The first step in using this (like the Comparison Test) is to find another series
(whose convergence or divergence is known) that “looks like” the series in question.

EXAMPLE 3.9 Using the Limit Comparison Test

Investigate the convergence or divergence of the series
∞∑

k=1

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1
.

5 10 15 20

1.52

1.54

1.56

1.58

1.60

1.62

1.50

Sn

n

FIGURE 7.29

Sn =
n∑

k=1

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1
.

Solution The graph of the first 20 partial sums in Figure 7.29 suggests that the series con-
verges to a limit of about 1.61. The following table of partial sums supports this conjecture.

n Sn ���
n∑

k���1

k2 −−− 2k ��� 7
k5 � 5k4 −−− 3k3 ��� 2k −−− 1

5 1.60522

10 1.61145

20 1.61365

50 1.61444

75 1.61453

100 1.61457

Notice that for k large, the general term looks like
k2

k5
= 1

k3
(since the terms with the

largest exponents tend to dominate the expression, for large values of k). From the Limit
Comparison Test, we have

lim
k→∞

ak

bk
= lim

k→∞
k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1

1(
1
k3

)
= lim

k→∞
(k2 − 2k + 7)

(k5 + 5k4 − 3k3 + 2k − 1)

k3

1

= lim
k→∞

(k5 − 2k4 + 7k3)

(k5 + 5k4 − 3k3 + 2k − 1)

(
1
k5

)(
1
k5

)
= lim

k→∞
1 − 2

k + 7
k2

1 + 5
k − 3

k2 + 2
k4 − 1

k5

= 1 > 0.

Since
∞∑

k=1

1

k3
is a convergent p-series (p = 3 > 1), the Limit Comparison Test says

that
∞∑

k=1

k2 − 2k + 7

k5 + 5k4 − 3k3 + 2k − 1
converges, also. Finally, now that we have established

that the series is in fact, convergent, we can use our table of computed partial sums to
approximate the sum of the series as 1.61457. �
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EXERCISES 7.3

WRITING EXERCISES

1. Notice that the Comparison Test doesn’t always give us infor-
mation about convergence or divergence. If ak ≤ bk for each k

and
∞∑

k=1
bk diverges, explain why you can’t tell whether or not

∞∑
k=1

ak diverges.

2. Explain why the Limit Comparison Test works. In partic-

ular, if lim
k→∞

ak

bk
= 1, explain how ak and bk compare and

conclude that
∞∑

k=1
ak and

∞∑
k=1

bk either both converge or both

diverge.

3. In the Limit Comparison Test, if lim
k→∞

ak

bk
= 0 and

∞∑
k=1

ak con-

verges, explain why you can’t tell whether or not
∞∑

k=1
bk con-

verges.

4. A p-series converges if p > 1 and diverges if p < 1. What
happens for p = 1? If your friend knows that the harmonic
series diverges, explain an easy way to remember the rest of
the conclusion of the p-series test.

In exercises 1–36, determine convergence or divergence of the
series.

1.
∞∑

k=1

4
3
√

k
2.

∞∑
k=1

k−9/10

3.
∞∑

k=1

k−11/10 4.
∞∑

k=1

4√
k

5.
∞∑

k=0

k + 1

k2 + 2k + 3
6.

∞∑
k=0

k2 + 1

k3 + 3k + 2

7.
∞∑

k=1

4

2 + 4k
8.

∞∑
k=1

4

(2 + 4k)2

9.
∞∑

k=2

2

k ln k
10.

∞∑
k=2

3

k(ln k)2

11.
∞∑

k=1

2k

k3 + 1
12.

∞∑
k=0

√
k

k2 + 1

13.
∞∑

k=1

e1/k

k2
14.

∞∑
k=1

√
1 + 1/k

k2

15.
∞∑

k=1

e−√
k

√
k

16.
∞∑

k=1

ke−k2

4 + e−k

17.
∞∑

k=1

3k

k3/2 + 2
18.

∞∑
k=1

2k2

k5/2 + 2

19.
∞∑

k=0

2√
k2 + 4

20.
∞∑

k=0

4√
k3 + 1

21.
∞∑

k=0

k2 + 1√
k5 + 1

22.
∞∑

k=0

k + 2
3
√

k5 + 4

23.
∞∑

k=1

tan−1 k

1 + k2
24.

∞∑
k=1

sin−1(1/k)

k2

25.
∞∑

k=1

1

cos2 k
26.

∞∑
k=1

1

sin2 k

27.
∞∑

k=1

sin k + 2

k2
28.

∞∑
k=1

e1/k + 1

k3

29.
∞∑

k=2

ln k

k
30.

∞∑
k=1

2 + cos k

k

31.
∞∑

k=1

k4 + 2k − 1

k5 + 3k2 + 1
32.

∞∑
k=0

k3 + 2k + 3

k4 + 2k2 + 4

33.
∞∑

k=1

k + 1

k + 2
34.

∞∑
k=1

k + 1

k2 + 2

35.
∞∑

k=1

k + 1

k3 + 2
36.

∞∑
k=1

k + 1

k4 + 2

37. In our statement of the Comparison Test, we required that
ak ≤ bk for all k. Explain why the conclusion would remain
true if ak ≤ bk for k ≥ 100.

38. If ak > 0 and
∞∑

k=1
ak converges, prove that

∞∑
k=1

a2
k converges.

39. Prove the following extension of the Limit Comparison Test:

if lim
k→∞

ak

bk
= 0 and

∞∑
k=1

bk converges, then
∞∑

k=1
ak converges.

40. Prove the following extension of the Limit Comparison Test:

if lim
k→∞

ak

bk
= ∞ and

∞∑
k=1

bk diverges, then
∞∑

k=1
ak diverges.

In exercises 41–44, determine all values of p for which the series
converges.

41.
∞∑

k=2

1

k(ln k)p
42.

∞∑
k=0

1

(a + bk)p
, a > 0, b > 0

43.
∞∑

k=2

ln k

k p
44.

∞∑
k=1

k p−1ekp

In exercises 45–50, estimate the error in using the indicated par-
tial sum Sn to approximate the sum of the series.

45. S100,

∞∑
k=1

1

k4
46. S100,

∞∑
k=1

4

k2
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47. S50,

∞∑
k=1

6

k8
48. S80,

∞∑
k=1

2

k2 + 1

49. S40,

∞∑
k=1

ke−k2
50. S200,

∞∑
k=1

tan−1 k

1 + k2

In exercises 51–54, determine the number of terms needed to
obtain an approximation of the sum accurate to within 10−6.

51.
∞∑

k=1

3

k4
52.

∞∑
k=1

2

k2

53.
∞∑

k=1

ke−k2
54.

∞∑
k=1

4

k5

In exercises 55 and 56, answer with “converges” or “diverges”
or “can’t tell.” Assume that ak > 0 and bk > 0.

55. Assume that
∞∑

k=1
ak converges and fill in the blanks.

a. If bk ≥ ak for k ≥ 10, then
∞∑

k=1
bk .

b. If lim
k→∞

bk

ak
= 0, then

∞∑
k=1

bk .

c. If bk ≤ ak for k ≥ 6, then
∞∑

k=1
bk .

d. If lim
k→∞

bk

ak
= ∞, then

∞∑
k=1

bk .

56. Assume that
∞∑

k=1
ak diverges and fill in the blanks.

a. If bk ≥ ak for k ≥ 10, then
∞∑

k=1
bk .

b. If lim
k→∞

bk

ak
= 0, then

∞∑
k=1

bk .

c. If bk ≤ ak for k ≥ 6, then
∞∑

k=1
bk .

d. If lim
k→∞

bk

ak
= ∞, then

∞∑
k=1

bk .

57. Prove that the every-other-term harmonic series 1 + 1
3 + 1

5 +
1
7 + · · · diverges. (Hint: Write the series as

∞∑
k=0

1

2k + 1
and use

the Limit Comparison Test.)

58. Would the every-third-term harmonic series 1 + 1
4 + 1

7 +
1
10 + · · · diverge? How about the every-fourth-term harmonic
series 1 + 1

5 + 1
9 + 1

13 + · · · ? Make as general a statement as
possible about such series.

59. The Riemann-zeta function is defined by ζ (x) =
∞∑

k=1

1

kx

for x > 1. Explain why the restriction x > 1 is necessary.
Leonhard Euler, considered to be one of the greatest and most
prolific mathematicians ever, proved the remarkable result that

ζ (x) =
∏

p prime

1(
1 − 1

px

) .

60. Estimate ζ (2) numerically. Compare your result with that of
exploratory exercise 1 of section 7.2.

In exercises 61–64, use your CAS or graphing calculator to nu-
merically estimate the sum of the convergent p-series and iden-
tify x such that the sum equals ζ(x) for the Riemann-zeta func-
tion of exercise 59.

61.
∞∑

k=1

1

k4
62.

∞∑
k=1

1

k6

63.
∞∑

k=1

1

k8
64.

∞∑
k=1

1

k10

65. Suppose that you toss a fair coin until you get heads. How
many times would you expect to toss the coin? To answer this,
notice that the probability of getting heads on the first toss is
1
2 , getting tails then heads is

(
1
2

)2
, getting two tails then heads

is
(

1
2

)3
and so on. The mean number of tosses is

∞∑
k=1

k
(

1
2

)k
.

Use the Integral Test to prove that this series converges and
estimate the sum numerically.

66. A clever trick can be used to sum the series in exercise 65.

The series
∞∑

k=1
k

(
1
2

)k
can be visualized as the area of the figure

shown below. In columns of width one, we see one rectan-
gle of height 1

2 , two rectangles of height 1
4 , three rectangles

of height 1
8 and so on. Start the sum by taking one rectangle

from each column. The combined area of the first rectangles
is 1

2 + 1
4 + 1

8 + · · · . Show that this is a convergent series with
sum 1. Next, take the second rectangle from each column that
has at least two rectangles. The combined area of the second
rectangles is 1

4 + 1
8 + 1

16 + · · · . Show that this is a convergent

series with sum 1
2 . Next, take the third rectangle from each

column that has at least three rectangles. The combined area
from the third rectangles is 1

8 + 1
16 + 1

32 + · · · . Show that this

is a convergent series with sum 1
4 . Continue this process and

show that the total area of all rectangles is 1 + 1
2 + 1

4 + · · · .
Find the sum of this convergent series.

y

x

0.2
0.1

1 2 3 4

0.3
0.4
0.5

67. This problem is sometimes called the coupon collector’s prob-
lem. The problem is faced by collectors of trading cards. If
there are n different cards that make a complete set and you
randomly obtain one at a time, how many cards would you
expect to obtain before having a complete set? (By random,
we mean that each different card has the same probability of 1

n
of being the next card obtained.) Here and in exercises 68–70,
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we find the answer for n = 10. The first step is simple; to col-
lect one card you need to obtain one card. Now, given that you
have one card, how many cards do you need to obtain to get
a second (different) card? If you’re lucky, the next card is it
(this has probability 9

10 ). But your next card might be a dupli-
cate and then you get a new card (this has probability 1

10
9
10 ).

Or you might get two duplicates and then a new card (this
has probability 1

10
1
10

9
10 ) and so on. The mean is 1 9

10 + 2 1
10

9
10 +

3 1
10

1
10

9
10 + · · · or

∞∑
k=1

k
(

1
10

)k−1 (
9
10

) =
∞∑

k=1

9k

10k
. Using the same

trick as in exercise 66, show that this is a convergent series with

sum
10

9
.

68. In the situation of exercise 67, if you have two different cards
out of 10, the average number of cards to get a third dis-

tinct card is
∞∑

k=1

8k

10k
; show that this is a convergent series with

sum
10

8
.

69. Use the results of exercises 67 and 68 to find the average num-
bers of cards you need to obtain to complete the set of 10
different cards.

70. Compute the ratio of cards obtained to cards in the set in exer-
cise 69. That is, for a set of 10 cards, on the average you need
to obtain times 10 cards to complete the set.

71. Generalize exercises 69 and 70 in the case of n cards in the set
(n > 2).

72. Use the divergence of the harmonic series to state the unfortu-
nate fact about the ratio of cards obtained to cards in the set as
n increases.

EXPLORATORY EXERCISES

1. Numerically investigate the p-series
∞∑

k=1

1

k0.9
and

∞∑
k=1

1

k1.1
and

for other values of p close to 1. Can you distinguish convergent
from divergent series numerically?

2. You know that
∞∑

k=2

1

k
diverges. This is the “smallest”

p-series that diverges, in the sense that
1

k
<

1

k p
for p < 1.

Show that
∞∑

k=2

1

k ln k
diverges and

1

k ln k
<

1

k
. Show that

∞∑
k=2

1

k ln k ln (ln k)
diverges and

1

k ln k ln (ln k)
<

1

k ln k
. Find

a series such that
∞∑

k=2
ak diverges and ak <

1

k ln k ln (ln k)
. Is

there a smallest divergent series?

7.4 ALTERNATING SERIES

So far, we have focused our attention on positive term series, that is, series all of whose
terms are positive. Before we consider the general case, we spend some time in this section
examining alternating series, that is, series whose terms alternate back and forth from
positive to negative. There are several reasons for doing this. First, alternating series appear
frequently in applications. Second, alternating series are surprisingly simple to deal with
and studying them will yield significant insight into how series work.

An alternating series is any series of the form

∞∑
k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + a5 − a6 + · · · ,

where ak > 0, for all k.

EXAMPLE 4.1 The Alternating Harmonic Series

Investigate the convergence or divergence of the alternating harmonic series

∞∑
k=1

(−1)k+1

k
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · · .
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Solution The graph of the first 20 partial sums seen in Figure 7.30 suggests that the
series might converge to about 0.7. We now calculate the first few partial sums by hand.
Note that

S1 = 1, S5 = 7

12
+ 1

5
= 47

60
,

S2 = 1 − 1

2
= 1

2
, S6 = 47

60
− 1

6
= 37

60
,

S3 = 1

2
+ 1

3
= 5

6
, S7 = 37

60
+ 1

7
= 319

420
,

S4 = 5

6
− 1

4
= 7

12
, S8 = 319

420
− 1

8
= 533

840

5 10 15 20

0.2

0.4

0.6

0.8

1.0

n

Sn

FIGURE 7.30

Sn =
n∑

k=1

(−1)k+1

k
.

and so on. We have plotted these first 8 partial sums on the number line shown in
Figure 7.31.

0.5 0.6 0.7 0.8 0.9 1

S2 S4 S6 S8 S7 S5 S3 S1

FIGURE 7.31

Partial sums of
∞∑

k=1

(−1)k+1

k
.

You should notice that the partial sums are bouncing back and forth, but seem to be
zeroing-in on some value. (Could it be the sum of the series?) This should not be sur-
prising, since as each new term is added or subtracted, we are adding or subtracting
less than we subtracted or added (Why did we reverse the order here?) to get the pre-
vious partial sum. You should notice this same zeroing-in in the accompanying table
displaying the first 20 partial sums of the series. Based on the behavior of the par-
tial sums, it is reasonable to conjecture that the series converges to some value be-
tween 0.66877 and 0.71877.We can resolve the question of convergence definitively with
Theorem 4.1. �

n Sn ���
n∑

k���1

(−1)k���1

k

1 1

2 0.5

3 0.83333

4 0.58333

5 0.78333

6 0.61667

7 0.75952

8 0.63452

9 0.74563

10 0.64563

11 0.73654

12 0.65321

13 0.73013

14 0.65871

15 0.72537

16 0.66287

17 0.7217

18 0.66614

19 0.71877

20 0.66877

THEOREM 4.1 (Alternating Series Test)

Suppose that lim
k→∞

ak = 0 and 0 < ak+1 ≤ ak for all k ≥ 1. Then, the alternating series
∞∑

k=1
(−1)k+1ak converges.

Make sure that you have a clear idea of what it is saying. In the case of an alternating
series satisfying the hypotheses of the theorem, we start with 0 and add a1 > 0 to get the
first partial sum S1. To get the next partial sum, S2, we subtract a2 from S1, where a2 < a1.
This says that S2 will be between 0 and S1. We illustrate this situation in Figure 7.32.

Continuing in this fashion, we add a3 to S2 to get S3. Since a3 < a2, we must have that
S2 < S3 < S1. Referring to Figure 7.32, notice that

S2 < S4 < S6 < · · · < S5 < S3 < S1.
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a1

a2

a3

a4

a5

a6

0 S2 S4 S6 S5 S3 S1

FIGURE 7.32
Convergence of the partial
sums of an alternating series.

In particular, this says that all of the odd-indexed partial sums (i.e., S2n+1, for n = 0, 1, 2, . . .)
are larger than all of the even-indexed partial sums (i.e., S2n , for n = 1, 2, . . .). As the
partial sums oscillate back and forth, they should be drawing closer and closer to some limit
S, somewhere between all of the even-indexed partial sums and the odd-indexed partial
sums,

S2 < S4 < S6 < · · · < S < · · · < S5 < S3 < S1. (4.1)

We illustrate the use of this new test in example 4.2.

EXAMPLE 4.2 Using the Alternating Series Test

Reconsider the convergence of the alternating harmonic series
∞∑

k=1

(−1)k+1

k
.

Solution Notice that

lim
k→∞

ak = lim
k→∞

1

k
= 0.

Further,

0 < ak+1 = 1

k + 1
≤ 1

k
= ak, for all k ≥ 1.

By the Alternating Series Test, the series converges. (You can use the calculations from
example 4.1 to arrive at an approximate sum.) �

The Alternating Series Test is certainly the easiest test we’ve discussed so far for
determining the convergence of a series. It’s straightforward, but you will sometimes need
to work a bit to verify the hypotheses.

EXAMPLE 4.3 Using the Alternating Series Test

Investigate the convergence or divergence of the alternating series
∞∑

k=1

(−1)k(k + 3)

k(k + 1)
.

5 10 15 20

�0.5

�1.0

�1.5

�2.0

Sn

n

FIGURE 7.33

Sn =
n∑

k=1

(−1)k(k + 3)

k(k + 1)
.

Solution The graph of the first 20 partial sums seen in Figure 7.33 suggests that the
series converges to some value around −1.5. The following table showing some select
partial sums suggests the same conclusion.
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n Sn ���
n∑

k���1

(−1)k(k ��� 3)
k(k ��� 1)

50 −1.45545

100 −1.46066

200 −1.46322

300 −1.46406

400 −1.46448

n Sn ���
n∑

k���1

(−1)k(k ��� 3)
k(k ��� 1)

51 −1.47581

101 −1.47076

201 −1.46824

301 −1.46741

401 −1.46699

We can verify that the series converges by first checking that

lim
k→∞

ak = lim
k→∞

(k + 3)

k(k + 1)

1
k2

1
k2

= lim
k→∞

1
k + 3

k2

1 + 1
k

= 0.

Next, consider the ratio of the absolute value of two consecutive terms:

ak+1

ak
= (k + 4)

(k + 1)(k + 2)

k(k + 1)

(k + 3)
= k2 + 4k

k2 + 5k + 6
< 1,

for all k ≥ 1. From this, it follows that ak+1 < ak , for all k ≥ 1 and so, by the Alternating
Series Test, the series converges. Finally, from the preceding table, we can see that the
series converges to a sum between −1.46448 and −1.46699. (How can you be sure that
the sum is in this interval?) �

EXAMPLE 4.4 A Divergent Alternating Series

Determine whether the alternating series
∞∑

k=1

(−1)kk

k + 2
converges or diverges.

Solution First, notice that

lim
k→∞

ak = lim
k→∞

k

k + 2
= 1 	= 0.

So, this alternating series is divergent, since by the kth-term test for divergence, the terms
must tend to zero in order for the series to be convergent. �

Estimating the Sum of an Alternating Series
We have repeatedly remarked that once you know that a series converges, you can always
approximate the sum of the series by computing some partial sums. However, in finding an
approximate sum of a convergent series, how close is close enough? Realize that answers to
such questions of accuracy are not “one size fits all,” but rather, are highly context-sensitive.
For instance, if the sum of the series is to be used to find the angle from the ground at which
you throw a ball to a friend, you might accept one answer. On the other hand, if the sum
of that same series is to be used to find the angle at which to aim your spacecraft to ensure
a safe reentry into the earth’s atmosphere, you would likely insist on greater precision (at
least, we would).

So far, we have calculated approximate sums of series by observing that a number
of successive partial sums of the series are within a given distance of one another. The
underlying assumption here is that when this happens, the partial sums are also within that
same distance of the sum of the series. Unfortunately, this is simply not true, in general
(although it is true for some series). What’s a mathematician to do? For the case of alternating
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series, we are quite fortunate to have available a simple way to get a handle on the accuracy.
Note that the error in approximating the sum S by the nth partial sum Sn is S − Sn .

Take a look back at Figure 7.32. Recall that we had observed from the figure that all

of the even-indexed partial sums Sn of the convergent alternating series,
∞∑

k=1
(−1)k+1ak lie

below the sum S, while all of the odd-indexed partial sums lie above S. That is, [as in (4.1)],

S2 < S4 < S6 < · · · < S < · · · < S5 < S3 < S1.

This says that for n even,

Sn ≤ S ≤ Sn+1.

Subtracting Sn from all terms, we get

0 ≤ S − Sn ≤ Sn+1 − Sn = an+1.

Since an+1 > 0, we have

−an+1 ≤ 0 ≤ S − Sn ≤ an+1,

or

|S − Sn| ≤ an+1, for n even. (4.2)

Similarly, for n odd, we have that

Sn+1 ≤ S ≤ Sn.

Again subtracting Sn , we get

−an+1 = Sn+1 − Sn ≤ S − Sn ≤ 0 ≤ an+1

or

|S − Sn| ≤ an+1, for n odd. (4.3)

Since (4.2) and (4.3) (these are called error bounds) are the same, we have the same error
bound whether n is even or odd. This establishes the result stated in Theorem 4.2.

THEOREM 4.2

Suppose that lim
k→∞

ak = 0 and 0 < ak+1 ≤ ak for all k ≥ 1. Then, the alternating series
∞∑

k=1
(−1)k+1ak converges to some number S and the error in approximating S by the

nth partial sum Sn satisfies

|S − Sn| ≤ an+1. (4.4)

Notice that this says that the absolute value of the error in approximating S by Sn does
not exceed an+1 (the absolute value of the first neglected term).

EXAMPLE 4.5 Estimating the Sum of an Alternating Series

Approximate the sum of the alternating series
∞∑

k=1

(−1)k+1

k4
by the 40th partial sum and

estimate the error in this approximation.

Solution We leave it as an exercise to show that this series is convergent. We then
approximate the sum by

S ≈ S40 = 0.9470326439.
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From our error estimate (4.4), we have

|S − S40| ≤ a41 = 1

414
≈ 3.54 × 10−7.

This says that our approximation S ≈ 0.9470326439 is off by no more than
±3.54 × 10−7. �

A much more interesting question than the one asked in example 4.5 is the following.
For a given convergent alternating series, how many terms must we take in order to guarantee
that our approximation is accurate to a given level? We use the same estimate of error from
(4.4) to answer this question, as in example 4.6.

EXAMPLE 4.6 Finding the Number of Terms Needed
for a Given Accuracy

For the convergent alternating series
∞∑

k=1

(−1)k+1

k4
, how many terms are needed to guar-

antee that Sn is within 1 × 10−10 of the actual sum S?

Solution In this case, we want to find the number of terms n for which

|S − Sn| ≤ 1 × 10−10.

From (4.4), we have that

|S − Sn| ≤ an+1 = 1

(n + 1)4
.

So, we look for n such that
1

(n + 1)4
≤ 1 × 10−10.

Solving for n, we get

1010 ≤ (n + 1)4,

so that
4
√

1010 ≤ n + 1

or

n ≥ 4
√

1010 − 1 ≈ 315.2.

So, taking n ≥ 316 will guarantee an error of no more than 1 × 10−10. Using the suggested
number of terms, we get the approximate sum

S ≈ S316 ≈ 0.947032829447,

which we now know to be correct to within 1 × 10−10. �

EXERCISES 7.4

WRITING EXERCISES

1. If ak ≥ 0, explain in terms of partial sums why
∞∑

k=1
(−1)k+1ak

is more likely to converge than
∞∑

k=1
ak .

2. Explain why in Theorem 4.1 we need the assumption that
ak+1 ≤ ak . That is, what would go wrong with the proof if
ak+1 > ak?
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3. The Alternating Series Test was stated for the series
∞∑

k=1
(−1)k+1ak . Explain the difference between

∞∑
k=1

(−1)kak and

∞∑
k=1

(−1)k+1ak and explain why we could have stated the theo-

rem for
∞∑

k=1
(−1)kak .

4. A common mistake is to think that if lim
k→∞

ak = 0, then
∞∑

k=1
ak

converges. Explain why this is not true for positive-term series.
This is also not true for alternating series unless you add one
more hypothesis. State the extra hypothesis and explain why
it’s needed.

In exercises 1–26, determine if the series is convergent or
divergent.

1.
∞∑

k=1

(−1)k+1 3

k
2.

∞∑
k=1

(−1)k+1 4

k + 1

3.
∞∑

k=1

(−1)k 2

k2
4.

∞∑
k=1

(−1)k 4√
k

5.
∞∑

k=1

(−1)k+1 k2

k + 1
6.

∞∑
k=1

(−1)k+1 2k2 − 1

k

7.
∞∑

k=1

k

k2 + 2
8.

∞∑
k=1

2k − 1

k3

9.
∞∑

k=1

(−1)k+1 k

2k
10.

∞∑
k=1

(−1)k+1 3k

k

11.
∞∑

k=1

(−1)k 4k

k2
12.

∞∑
k=1

(−1)k k + 2

4k

13.
∞∑

k=1

2k

k + 1
14.

∞∑
k=1

4k2

k2 + 2k + 2

15.
∞∑

k=1

(−1)k 3√
k + 1

16.
∞∑

k=1

(−1)k k + 1

k3

17.
∞∑

k=1

(−1)k+1 2

k!
18.

∞∑
k=1

(−1)k+1 k!

3k

19.
∞∑

k=1

(−1)k k!

2k
20.

∞∑
k=1

(−1)k 4k

k!

21.
∞∑

k=0

(−1)k+12e−k 22.
∞∑

k=1

(−1)k+13e1/k

23.
∞∑

k=2

(−1)k ln k 24.
∞∑

k=2

(−1)k 1

ln k

25.
∞∑

k=0

(−1)k+1 1

2k
26.

∞∑
k=0

(−1)k+12k

In exercises 27–34, estimate the sum of each convergent series
to within 0.01.

27.
∞∑

k=1

(−1)k+1 4

k3
28.

∞∑
k=1

(−1)k+1 2

k3

29.
∞∑

k=1

(−1)k k

2k
30.

∞∑
k=1

(−1)k k2

10k

31.
∞∑

k=0

(−1)k 3

k!
32.

∞∑
k=0

(−1)k+1 2

k!

33.
∞∑

k=1

(−1)k+1 4

k4
34.

∞∑
k=1

(−1)k+1 3

k5

In exercises 35–40, determine how many terms are needed to
estimate the sum of the series to within 0.0001.

35.
∞∑

k=1

(−1)k+1 2

k
36.

∞∑
k=1

(−1)k+1 4√
k

37.
∞∑

k=0

(−1)k 2k

k!
38.

∞∑
k=0

(−1)k 10k

k!

39.
∞∑

k=1

(−1)k+1 k!

kk
40.

∞∑
k=1

(−1)k+1 4k

kk

41. In example 4.3, we showed you one way to verify that a se-
quence is decreasing. As an alternative, explain why if ak =
f (k) and f ′(x) < 0, for all x ≥ 1, then the sequence ak is

decreasing. Use this method to prove that ak = k

k2 + 2
is de-

creasing.

42. Use the method of exercise 41 to prove that ak = k

2k
is

decreasing.

43. In this exercise, you will discover why the Alternating Se-

ries Test requires that ak+1 ≤ ak . If ak =
{

1/k if k is odd
1/k2 if k is even

,

argue that
∞∑

k=1
(−1)k+1ak diverges to ∞. Thus, an alternating

series can diverge even if lim
k→∞

ak = 0.

44. Verify that the series
∞∑

k=0
(−1)k 1

2k + 1
= 1 − 1

3 + 1
5 − 1

7 + · · ·
converges. It can be shown that the sum of this series is π

4 .
Given this result, we could use this series to obtain an approxi-
mation of π . How many terms would be necessary to get eight
digits of π correct?

45. A person starts walking from home (at x = 0) toward a friend’s
house (at x = 1). Three-fourths of the way there, he changes
his mind and starts walking back home. Three-fourths of the
way home, he changes his mind again and starts walking back
to his friend’s house. If he continues this pattern of indecision,
always turning around at the three-fourths mark, what will be
the eventual outcome? A similar problem appeared in a national
magazine and created a minor controversy due to the ambigu-
ous wording of the problem. It is clear that the first turnaround
is at x = 3

4 and the second turnaround is at 3
4 − 3

4

(
3
4

) = 3
16 .

But is the third turnaround three-fourths of the way to x = 1 or
x = 3

4 ? The magazine writer assumed the latter. Show that with
this assumption, the person’s location forms a geometric series.
Find the sum of the series to find where the person ends up.
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x � 0 x � 1

46. If the problem of exercise 45 is interpreted differently, a
more interesting answer results. As before, let x1 = 3

4 and
x2 = 3

16 . If the next turnaround is three-fourths of the way
from x2 to 1, then x3 = 3

16 + 3
4

(
1 − 3

16

) = 3
4 + 1

4 x2 = 51
64 .

Three-fourths of the way back to x = 0 would put us at
x4 = x3 − 3

4 x3 = 1
4 x3 = 51

256 . Show that if n is even, then

xn+1 = 3
4 + 1

4 xn and xn+2 = 1
4 xn+1. Show that the person

ends up walking back and forth between two specific locations.

47. Use your CAS or calculator to find the sum of the alternating

harmonic series
∞∑

k=1
(−1)k+1 1

k
accurate to six digits. Compare

your approximation to ln 2.

48. Find all values of p such that the series
∞∑

k=1
(−1)k 1

k p
converges.

Compare your result to the p-series of section 7.3.

EXPLORATORY EXERCISES

1. In this exercise, you will determine whether or not the
improper integral

∫ 1
0 sin (1/x) dx converges. Argue that∫ 1

1/π
sin (1/x) dx ,

∫ 1/π

1/(2π ) sin (1/x) dx ,
∫ 1/(2π )

1/(3π ) sin (1/x) dx, · · ·
exist and that (if it exists),∫ 1

0
sin (1/x) dx =

∫ 1

1/π

sin (1/x) dx +
∫ 1/π

1/(2π )
sin (1/x) dx

+
∫ 1/(2π )

1/(3π )
sin (1/x) dx + · · · .

Verify that the series is an alternating series and show that the
hypotheses of the Alternating Series Test are met. Thus, the
series and the improper integral both converge.

2. Consider the series
∞∑

k=1
(−1)k+1 xk

k
, where x is a constant.

Show that the series converges for x = 1/2; x = −1/2; any
x such that −1 < x ≤ 1. Show that the series diverges if
x = −1, x < −1 or x > 1. We see in section 7.6 that when
the series converges, it converges to ln (1 + x). Verify this
numerically for x = 1/2 and x = −1/2.

7.5 ABSOLUTE CONVERGENCE AND THE RATIO TEST

You should note that, outside of the Alternating Series Test presented in section 7.4, our
other tests for convergence of series (i.e., the Integral Test and the two comparison tests)
apply only to series all of whose terms are positive. So, what do we do if we’re faced with
a series that has both positive and negative terms, but that is not an alternating series? For
instance, look at the series

∞∑
k=1

sin k

k3
= sin 1 + 1

8
sin 2 + 1

27
sin 3 + 1

64
sin 4 + · · · .

This has both positive and negative terms, but the terms do not alternate signs. (Calculate the

first five or six terms of the series to see this for yourself.) For any such series
∞∑

k=1
ak , we can

get around this problem by checking if the series of absolute values
∞∑

k=1
|ak | is convergent.

When this happens, we say that the original series
∞∑

k=1
ak is absolutely convergent (or

converges absolutely). You should note that to test the convergence of the series of absolute

values
∞∑

k=1
|ak | (all of whose terms are positive), we have all of our earlier tests for positive

term series available to us.

EXAMPLE 5.1 Testing for Absolute Convergence

Determine if
∞∑

k=1

(−1)k+1

2k
is absolutely convergent.
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Solution It is easy to show that this alternating series is convergent. (Try it!) From the
graph of the first 20 partial sums in Figure 7.34, it appears that the series converges to
approximately 0.35. To determine absolute convergence, we need to determine whether

or not the series of absolute values,
∞∑

k=1

∣∣∣∣ (−1)k+1

2k

∣∣∣∣ is convergent. We have

∞∑
k=1

∣∣∣∣ (−1)k+1

2k

∣∣∣∣ =
∞∑

k=1

1

2k
=

∞∑
k=1

(
1

2

)k

,

5 10 15 20

0.1

0.2

0.3

0.4

0.5

Sn

n

FIGURE 7.34

Sn =
n∑

k=1

(−1)k+1

2k
.

which you should recognize as a convergent geometric series (|r | = 1
2 < 1). This says

that the original series
∞∑

k=1

(−1)k+1

2k
converges absolutely.

�

You might be wondering about the relationship between convergence and absolute con-
vergence. We’ll prove shortly that every absolutely convergent series is also convergent (as
in example 5.1). However, the reverse is not true; there are many series that are convergent,
but not absolutely convergent. These are called conditionally convergent series. Can you
think of an example of such a series? If so, it’s probably the series in example 5.2.

EXAMPLE 5.2 A Conditionally Convergent Series

Determine if the alternating harmonic series
∞∑

k=1

(−1)k+1

k
is absolutely convergent.

Solution In example 4.2, we showed that this series is convergent. To test this for
absolute convergence, we consider the series of absolute values,

∞∑
k=1

∣∣∣∣ (−1)k+1

k

∣∣∣∣ =
∞∑

k=1

1

k
,

which is the harmonic series. We showed in section 7.2 (example 2.7) that the harmonic

series diverges. This says that
∞∑

k=1

(−1)k+1

k
converges, but does not converge absolutely

(i.e., it converges conditionally). �

THEOREM 5.1

If
∞∑

k=1
|ak | converges, then

∞∑
k=1

ak converges.

This result says that if a series converges absolutely, then it must also converge. Because
of this, when we test series, we first test for absolute convergence. If the series converges
absolutely, then we need not test any further to establish convergence.

PROOF

Notice that for any real number, x, we can say that −|x | ≤ x ≤ |x |. So, for any k, we have

−|ak | ≤ ak ≤ |ak |.
Adding |ak | to all the terms, we get

0 ≤ ak + |ak | ≤ 2|ak |. (5.1)
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Since
∞∑

k=1
ak is absolutely convergent, we have that

∞∑
k=1

|ak | and hence, also
∞∑

k=1
2|ak | =

2
∞∑

k=1
|ak | is convergent. Define bk = ak + |ak |. From (5.1),

0 ≤ bk ≤ 2|ak |

and so, by the Comparison Test,
∞∑

k=1
bk is convergent. Observe that we may write

∞∑
k=1

ak =
∞∑

k=1

(ak + |ak | − |ak |) =
∞∑

k=1

(ak + |ak |)︸ ︷︷ ︸
bk

−
∞∑

k=1

|ak |

=
∞∑

k=1

bk −
∞∑

k=1

|ak |.

Since the two series on the right-hand side are convergent, it follows that
∞∑

k=1
ak must also

be convergent.

EXAMPLE 5.3 Testing for Absolute Convergence

Determine whether
∞∑

k=1

sin k

k3
is convergent or divergent.

5 10 15 20

0.86

0.90

0.94

0.98

Sn

n

FIGURE 7.35

Sn =
n∑

k=1

sin k

k3
.

Solution Notice that while this is not a positive-term series, it is also not an alternating
series. Because of this, our only choice (given what we know) is to test the series for
absolute convergence. From the graph of the first 20 partial sums seen in Figure 7.35,
it appears that the series is converging to some value around 0.94. To test for absolute

convergence, we consider the series of absolute values,
∞∑

k=1

∣∣∣∣ sin k

k3

∣∣∣∣. Notice that

∣∣∣∣ sin k

k3

∣∣∣∣ = |sin k|
k3

≤ 1

k3
, (5.2)

since |sin k| ≤ 1, for all k. Of course,
∞∑

k=1

1

k3
is a convergent p-series (p = 3 > 1). By the

Comparison Test and (5.2),
∞∑

k=1

∣∣∣∣ sin k

k3

∣∣∣∣ converges, too. Consequently, the original series

∞∑
k=1

sin k

k3
converges absolutely (and hence, converges).

�

The Ratio Test
We now introduce a very powerful tool for testing a series for absolute convergence. This
test can be applied to a wide range of series, including the extremely important case of
power series that we discuss in section 7.6. As you’ll see, this test is also remarkably easy
to use.
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THEOREM 5.2 (Ratio Test)

Given
∞∑

k=1
ak , with ak 	= 0 for all k, suppose that

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = L .

Then,

(i) if L < 1, the series converges absolutely,
(ii) if L > 1 (or L = ∞), the series diverges and

(iii) if L = 1, there is no conclusion.

Because the proof of Theorem 5.2 is somewhat involved, we omit it.

EXAMPLE 5.4 Using the Ratio Test

Test
∞∑

k=1

(−1)kk

2k
for convergence.

5 10 15 20

1.0

1.5

2.0

0.5

Sn

n

FIGURE 7.36

Sn =
n∑

k=1

k

2k
.

Solution From the graph of the first 20 partial sums of the series of absolute values,
∞∑

k=1

k

2k
, seen in Figure 7.36, it appears that the series of absolute values converges to

about 2. From the Ratio Test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

k + 1

2k+1

k

2k

= lim
k→∞

k + 1

2k+1

2k

k
= 1

2
lim

k→∞
k + 1

k
= 1

2
< 1

Since

2k+1 = 2k · 21.

and so, the series converges absolutely, as expected from Figure 7.36. �

The Ratio Test is particularly useful when the general term of a series contains an
exponential term, as in example 5.4 or a factorial, as in example 5.5.

EXAMPLE 5.5 Using the Ratio Test

Test
∞∑

k=0

(−1)kk!

ek
for convergence.

5 10 15 20

�4 � 108

�6 � 108

�2 � 108

2 � 108

Sn

n

FIGURE 7.37

Sn =
n−1∑
k=0

(−1)kk!

ek
.

Solution From the graph of the first 20 partial sums of the series seen in Figure 7.37, it
appears that the series is diverging. (Look closely at the scale on the y-axis and compute
a table of values for yourself.) We can confirm this suspicion with the Ratio Test. We
have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)!

ek+1

k!

ek

= lim
k→∞

(k + 1)!

ek+1

ek

k!

= lim
k→∞

(k + 1) k!

ek!
= 1

e
lim

k→∞
k + 1

1
= ∞.

Since (k + 1)! = (k + 1) · k!

and ek+1 = ek · e1.

By the Ratio Test, the series diverges, as we suspected. �
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Recall that in the statement of the Ratio Test (Theorem 5.2), we said that if

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = 1,

then the Ratio Test yields no conclusion. By this, we mean that in such cases, the series
may or may not converge and further testing is required.

HISTORICAL NOTES
Srinivasa Ramanujan
(1887–1920) Indian
mathematician whose incredible
discoveries about infinite series
still mystify mathematicians.
Largely self-taught, Ramanujan
filled notebooks with conjectures
about series, continued fractions
and the Riemann-zeta function.
Ramanujan rarely gave a proof or
even justification of his results.
Nevertheless, the famous English
mathematician G. H. Hardy said,
“They must be true because, if
they weren’t true, no one would
have had the imagination to invent
them.” (See Exercise 39.)

EXAMPLE 5.6 A Divergent Series for Which the Ratio Test Fails

Use the Ratio Test for the harmonic series
∞∑

k=1

1

k
.

Solution We have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

1

k + 1
1

k

= lim
k→∞

k

k + 1
= 1.

In this case, the Ratio Test yields no conclusion, although we already know that the
harmonic series diverges. �

EXAMPLE 5.7 A Convergent Series for Which the Ratio Test Fails

Use the Ratio Test to test the series
∞∑

k=0

1

k2
.

Solution Here, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

1

(k + 1)2

k2

1

= lim
k→∞

k2

k2 + 2k + 1
= 1.

So again, the Ratio Test yields no conclusion, although we already know that this is a
convergent p-series (with p = 2 > 1). �

Look carefully at examples 5.6 and 5.7. You should recognize that the Ratio Test will
be inconclusive for any p-series. Fortunately, we don’t need the Ratio Test for these series.

We now present one final test for convergence of series.

THEOREM 5.3 (Root Test)

Given
∞∑

k=1
ak, suppose that lim

k→∞
k
√|ak | = L . Then,

(i) if L < 1, the series converges absolutely,
(ii) if L > 1 (or L = ∞), the series diverges and

(iii) if L = 1, there is no conclusion.

Notice how similar the conclusion is to the conclusion of the Ratio Test.

EXAMPLE 5.8 Using the Root Test

Use the Root Test to determine the convergence or divergence of the series
∞∑

k=1

(
2k + 4

5k − 1

)k

.
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Solution In this case, we consider

lim
k→∞

k
√

|ak | = lim
k→∞

k

√∣∣∣∣2k + 4

5k − 1

∣∣∣∣k

= lim
k→∞

2k + 4

5k − 1
= 2

5
< 1.

By the Root Test, the series is absolutely convergent. �

By this point in your study of series, it may seem as if we have thrown at you a dizzying
array of different series and tests for convergence or divergence. Just how are you to keep
all of these straight? The only suggestion we have is that you work through many problems.
We provide a good assortment in the exercise set that follows this section. Some of these
require the methods of this section, while others are drawn from the preceding sections ( just
to keep you thinking about the big picture). For the sake of convenience, we summarize our
convergence tests in the table that follows.

Test When to use Conclusions Section

Geometric Series
∞∑

k=0
ark Converges to

a

1 − r
if |r | < 1; 7.2

diverges if |r | ≥ 1.

kth-Term Test All series If lim
k→∞

ak 	= 0, the series diverges. 7.2

Integral Test
∞∑

k=1
ak where f (k) = ak and

∞∑
k=1

ak and
∫ ∞

1 f (x) dx 7.3

f is continuous, decreasing and f (x) ≥ 0 both converge or both diverge.

p-series
∞∑

k=1

1

k p
Converges for p > 1; diverges for p ≤ 1. 7.3

Comparison Test
∞∑

k=1
ak and

∞∑
k=1

bk , where 0 ≤ ak ≤ bk If
∞∑

k=1
bk converges, then

∞∑
k=1

ak converges. 7.3

If
∞∑

k=1
ak diverges, then

∞∑
k=1

bk diverges.

Limit Comparison Test
∞∑

k=1
ak and

∞∑
k=1

bk , where
∞∑

k=1
ak and

∞∑
k=1

bk 7.3

ak , bk > 0 and lim
k→∞

ak

bk
= L > 0 both converge or both diverge.

Alternating Series Test
∞∑

k=1
(−1)k+1ak where ak > 0 for all k If lim

k→∞
ak = 0 and ak+1 ≤ ak for all k, 7.4

then the series converges.

Absolute Convergence Series with some positive and some
negative terms (including alternating series)

If
∞∑

k=1
|ak | converges, then 7.5

∞∑
k=1

ak converges (absolutely).

Ratio Test Any series (especially those involving
exponentials and/or factorials)

For lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = L , 7.5

if L < 1,
∞∑

k=1
ak converges absolutely

if L > 1,
∞∑

k=1
ak diverges,

if L = 1, no conclusion.

Root Test Any series (especially those involving
exponentials)

For lim
k→∞

k
√|ak | = L , 7.5

if L < 1,
∞∑

k=1
ak converges absolutely

if L > 1,
∞∑

k=1
ak diverges,

if L = 1, no conclusion.
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EXERCISES 7.5

WRITING EXERCISES

1. Suppose that two series have identical terms except that in se-
ries A all terms are positive and in series B some terms are
positive and some terms are negative. Explain why series B
is more likely to converge. In light of this, explain why Theo-
rem 5.1 is true.

2. In the Ratio Test, if lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ > 1, which is bigger, |ak+1| or

|ak |? Explain why this implies that the series
∞∑

k=1
ak diverges.

3. In the Ratio Test, if lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = L < 1, which is bigger,

|ak+1| or |ak |? This inequality could also hold if L = 1. Com-
pare the relative sizes of |ak+1| and |ak | if L = 0.8 versus
L = 1. Explain why L = 0.8 would be more likely to cor-
respond to a convergent series than L = 1.

4. In many series of interest, the terms of the series involve pow-
ers of k (e.g., k2 ), exponentials (e.g., 2k ) or factorials (e.g., k!).
For which type(s) of terms is the Ratio Test likely to produce
a result (i.e., a limit different than 1)? Briefly explain.

In exercises 1–38, determine if the series is absolutely conver-
gent, conditionally convergent or divergent.

1.
∞∑

k=0

(−1)k 3

k!
2.

∞∑
k=0

(−1)k 6

k!

3.
∞∑

k=0

(−1)k2k 4.
∞∑

k=0

(−1)k 2

3k

5.
∞∑

k=1

(−1)k+1 k

k2 + 1
6.

∞∑
k=1

(−1)k+1 k2 + 1

k

7.
∞∑

k=0

(−1)k 3k

k!
8.

∞∑
k=0

(−1)k 10k

k!

9.
∞∑

k=1

(−1)k+1 k

2k + 1
10.

∞∑
k=1

(−1)k+1 4

2k + 1

11.
∞∑

k=1

(−1)k k2k

3k
12.

∞∑
k=1

(−1)k k23k

2k

13.
∞∑

k=1

(
4k

5k + 1

)k

14.
∞∑

k=1

(
1 − 3k

4k

)k

15.
∞∑

k=1

−2

k
16.

∞∑
k=1

4

k

17.
∞∑

k=1

(−1)k+1

√
k

k + 1
18.

∞∑
k=1

(−1)k+1 k

k3 + 1

19.
∞∑

k=1

k2

ek
20.

∞∑
k=1

k3e−k

21.
∞∑

k=2

e3k

k3k
22.

∞∑
k=1

(
ek

k2

)k

23.
∞∑

k=1

sin k

k2
24.

∞∑
k=1

cos k

k3

25.
∞∑

k=1

cos kπ

k
26.

∞∑
k=1

sin kπ

k

27.
∞∑

k=2

(−1)k

ln k
28.

∞∑
k=2

(−1)k

k ln k

29.
∞∑

k=1

(−1)k

k
√

k
30.

∞∑
k=1

(−1)k+1

√
k

31.
∞∑

k=1

3

kk
32.

∞∑
k=0

2k

3k

33.
∞∑

k=1

(−1)k+1 k!

4k
34.

∞∑
k=1

(−1)k+1 k24k

k!

35.
∞∑

k=1

(−1)k+1 k10

(2k)!
36.

∞∑
k=0

(−1)k 4k

(2k + 1)!

37.
∞∑

k=0

(−2)k(k + 1)

5k
38.

∞∑
k=1

(−3)k

k24k

39. In the 1910s, the Indian mathematician Srinivasa Ramanujan
discovered the formula

1

π
=

√
8

9801

∞∑
k=0

(4k)!(1103 + 26,390k)

(k!)43964k .

Approximate the series with only the k = 0 term and show that
you get 6 digits of π correct. Approximate the series using the
k = 0 and k = 1 terms and show that you get 14 digits of π cor-
rect. In general, each term of this remarkable series increases
the accuracy by 8 digits.

40. Prove that Ramanujan’s series in exercise 39 converges.

41. To show that
∞∑

k=1

k!

kk
converges, use the Ratio Test and the fact

that

lim
k→∞

(
k + 1

k

)k

= lim
k→∞

(
1 + 1

k

)k

= e.

42. Determine whether
∞∑

k=1

k!

1 · 3 · 5 · · · (2k − 1)
converges or

diverges.

EXPLORATORY EXERCISES

1. One reason that it is important to distinguish absolute from con-
ditional convergence of a series is the rearrangement of series,

to be explored in this exercise. Show that the series
∞∑

k=0

(−1)k

2k
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is absolutely convergent and find its sum S. Find the sum S+
of the positive terms of the series. Find the sum S− of the neg-
ative terms of the series. Verify that S = S+ + S−. This may
seem obvious, since for the finite sums you are most familiar
with, the order of addition never matters. However, you can-
not separate the positive and negative terms for conditionally

convergent series. For example, show that
∞∑

k=0

(−1)k

k + 1
converges

(conditionally) but that the series of positive terms and the se-
ries of negative terms both diverge. Explain in words why this
will always happen for conditionally convergent series. Thus,
the order of terms matters for conditionally convergent series.
By exploring further, we can uncover a truly remarkable fact:
for conditionally convergent series, you can reorder the terms

so that the partial sums converge to any real number. To il-

lustrate this, suppose we want to reorder the series
∞∑

k=0

(−1)k

k + 1
so that the partial sums converge to π

2 . Start by pulling out
positive terms

(
1 + 1

3 + 1
5 + · · ·) such that the partial sum is

within 0.1 of π

2 . Next, take the first negative term
(− 1

2

)
and

positive terms such that the partial sum is within 0.05 of π

2 .
Then take the next negative term

(− 1
4

)
and positive terms such

that the partial sum is within 0.01 of π

2 . Argue that you could
continue in this fashion to reorder the terms so that the partial
sums converge to π

2 . (Especially explain why you will never
“run out” of positive terms.) Then explain why you cannot do

the same with the absolutely convergent series
∞∑

k=0

(−1)k

2k
.

7.6 POWER SERIES

We now want to expand our discussion of series to the case where the terms of the series
are functions of the variable x . Pay close attention to what we are about to introduce,
for this is the culmination of all your hard work in sections 7.1 through 7.5. The primary
reason for studying series is that we can use them to represent functions. This opens up all
kinds of possibilities for us, from approximating the values of transcendental functions to
calculating derivatives and integrals of such functions, to studying differential equations.
As well, defining functions as convergent series produces an explosion of new functions
available to us. In fact, many functions of great significance in applications (for instance,
Bessel functions) are defined as a series. We take the first few steps in this section.

As a start, consider the series
∞∑

k=0

(x − 2)k = 1 + (x − 2) + (x − 2)2 + (x − 2)3 + · · · .

Notice that for each fixed x , this is a geometric series with r = (x − 2). Recall that this says
that the series will converge whenever |r | = |x − 2| < 1 and will diverge whenever |r | =
|x − 2| ≥ 1. Further, for each x with |x − 2| < 1 (i.e., 1 < x < 3), the series converges to

a

1 − r
= 1

1 − (x − 2)
= 1

3 − x
.

That is, for each x in the interval (1, 3), we have
∞∑

k=0

(x − 2)k = 1

3 − x
.

321

�1

1

2

3 y � f (x)

y � P1(x)

y � P2(x)

y � P3(x)

y

x

FIGURE 7.38

y = 1

3 − x
and the first three partial

sums of
∞∑

k=0
(x − 2)k .

For all other values of x , the series diverges. In Figure 7.38, we show a graph of f (x) =
1

3 − x
, along with the first three partial sums Pn , of this series, where

Pn(x) =
n∑

k=0

(x − 2)k = 1 + (x − 2) + (x − 2)2 + · · · + (x − 2)n,

on the interval [1, 3]. Notice that as n gets larger, Pn(x) appears to get closer to f (x), for
any given x in the interval (1, 3). Further, as n gets larger, Pn(x) tends to stay close to f (x)
for a larger range of x-values.
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Make certain that you understand what we’ve observed here: we have taken a series and
noticed that it is equivalent to (i.e., it converges to) a known function on a certain interval.

You might ask why anyone would care if you could do that. Certainly, f (x) = 1

3 − x
is

a perfectly good function and anything you’d want to do with it will most definitely be

easier using the algebraic expression
1

3 − x
than using the equivalent series representation,

∞∑
k=0

(x − 2)k . However, imagine what benefits you might find if you could take a given

function (say, one that you don’t know a whole lot about) and find an equivalent series
representation. This is precisely what we are going to do in section 7.7. For instance, we
will be able to show that for all x ,

ex =
∞∑

k=0

xk

k!
= 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · . (6.1)

So, who cares? Well, suppose you wanted to calculate e1.234567. How would you do that? Of
course, you’d use a calculator. But, haven’t you ever wondered how your calculator does
it? The problem is that ex is not an algebraic function. That is, we can’t compute its values
by using algebraic operations (i.e., addition, subtraction, multiplication, division and nth
roots). Over the next few sections, we begin to explore this question. For the moment, let
us say this: if we have the series representation (6.1) for ex , then for any given x , we can
compute an approximation to ex , simply by summing the first few terms of the equivalent
series. This is easy to do, since the partial sums of the series are simply polynomials.

In general, any series of the form
∞∑

k=0

bk(x − c)k = b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + · · ·Power series

NOTES
According to the expansion
indicated to the right, the first
term of the power series is b0,
even when x = c, although the
summation notation might
suggest that the first term is
b0 (0)0, which is not defined.

is called a power series in powers of (x − c). We refer to the constants bk, k = 0, 1, 2, . . .

as the coefficients of the series. The first question is: for what values of x does the series

converge? Saying this another way, the power series
∞∑

k=0
bk(x − c)k defines a function of x .

Its domain is the set of all x for which the series converges. The primary tool for investigating
the convergence or divergence of a power series is the Ratio Test. Notice again that the partial
sums of a power series are all polynomials (the simplest functions around).

EXAMPLE 6.1 Determining Where a Power Series Converges

Determine the values of x for which the power series
∞∑

k=0

k

3k+1
xk converges.

Solution Using the Ratio Test, we have convergence if

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ (k + 1)xk+1

3k+2

3k+1

kxk

∣∣∣∣
= lim

k→∞
(k + 1)|x |

3k
= |x |

3
lim

k→∞
k + 1

k
Since xk+1 = xk · x1

and 3k+2 = 3k+1 · 31.

= |x |
3

< 1,

for |x | < 3 or −3 < x < 3. So, the series converges absolutely for −3 < x < 3 and
diverges for |x | > 3 (i.e., for x > 3 or x < −3). Since the Ratio Test gives no conclusion
for the endpoints x = ±3, we must test these separately.
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For x = 3, we have the series
∞∑

k=0

k

3k+1
xk =

∞∑
k=0

k

3k+1
3k =

∞∑
k=0

k

3
.

Since

lim
k→∞

k

3
= ∞ 	= 0,

the series diverges by the kth-term test for divergence. The series diverges when x = −3,
for the same reason. Thus, the power series converges for all x in the interval (−3, 3) and
diverges for all x outside this interval. �

Observe that example 6.1 has something in common with the introductory example.

In both cases, the series have the form
∞∑

k=0
bk(x − c)k and there is an interval of the form

(c − r, c + r ) on which the series converges and outside of which the series diverges. (In
the case of example 6.1, notice that c = 0.) This interval on which a power series converges
is called the interval of convergence. The constant r is called the radius of convergence
(i.e., r is half the length of the interval of convergence). It turns out that there is such an
interval for every power series. We have the following result.

THEOREM 6.1

Given any power series,
∞∑

k=0
bk(x − c)k , there are exactly three possibilities:

(i) The series converges for all x ∈ (−∞, ∞) and the radius of convergence is r = ∞;
(ii) The series converges only for x = c (and diverges for all other values of x) and

the radius of convergence is r = 0; or
(iii) The series converges for x ∈ (c − r, c + r ) and diverges for x < c − r and for

x > c + r , for some number r with 0 < r < ∞.

The proof of the theorem can be found in Appendix F.

EXAMPLE 6.2 Finding the Interval and Radius of Convergence

Determine the radius and interval of convergence for the power series
∞∑

k=0

10k

k!
(x − 1)k .

Solution From the Ratio Test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣10k+1(x − 1)k+1

(k + 1)!

k!

10k(x − 1)k

∣∣∣∣
= 10|x − 1| lim

k→∞
k!

(k + 1)k!
Since (x − 1)k+1 = (x − 1)k (x − 1)1

and (k + 1)! = (k + 1)k!

= 10|x − 1| lim
k→∞

1

k + 1
= 0 < 1,

for all x . This says that the series converges absolutely for all x . Thus, the interval of
convergence for this series is (−∞, ∞) and the radius of convergence is r = ∞. �
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The interval of convergence for a power series can be a closed interval, an open interval
or a half-open interval, as in example 6.3.

EXAMPLE 6.3 A Half-Open Interval of Convergence

Determine the radius and interval of convergence for the power series
∞∑

k=1

xk

k4k
.

Solution From the Ratio Test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ xk+1

(k + 1)4k+1

k4k

xk

∣∣∣∣
= |x |

4
lim

k→∞
k

k + 1
= |x |

4
< 1.

So, we are guaranteed absolute convergence for |x | < 4 and divergence for |x | > 4. It
remains only to test the endpoints of the interval: x = ±4. For x = 4, we have

∞∑
k=1

xk

k4k
=

∞∑
k=1

4k

k4k
=

∞∑
k=1

1

k
,

which you will recognize as the harmonic series, which diverges. For x = −4, we have
∞∑

k=1

xk

k4k
=

∞∑
k=1

(−4)k

k4k
=

∞∑
k=1

(−1)k

k
,

which is the alternating harmonic series, which we know converges (see example 4.2).
So, in this case, the interval of convergence is the half-open interval [−4, 4) and the radius
of convergence is r = 4. �

Notice that (as stated in Theorem 6.1) every power series,
∞∑

k=0
bk(x − c)k converges at

least for x = c, since for x = c, we have the trivial case

∞∑
k=0

bk(x − c)k = b0 +
∞∑

k=1

bk (c − c)k = b0 +
∞∑

k=1

bk0k = b0 + 0 = b0.

EXAMPLE 6.4 A Power Series That Converges at Only One Point

Determine the radius of convergence for the power series
∞∑

k=0
k!(x − 5)k .

Solution From the Ratio Test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ (k + 1)!(x − 5)k+1

k!(x − 5)k

∣∣∣∣
= lim

k→∞
(k + 1)k!|x − 5|

k!

= lim
k→∞

[(k + 1)|x − 5|]

=
{

0, if x = 5
∞, if x 	= 5.

Thus, this power series converges only for x = 5 and so, its radius of convergence
is r = 0. �
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Suppose that the power series
∞∑

k=0
bk(x − c)k has radius of convergence r > 0. Then the

series converges absolutely for all x in the interval (c − r, c + r ) and might converge at one
or both of the endpoints, x = c − r and x = c + r . Notice that since the series converges
for each x ∈ (c − r, c + r ), it defines a function f on the interval (c − r, c + r ),

f (x) =
∞∑

k=0

bk(x − c)k = b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + · · · .

It turns out that such a function is continuous and differentiable, although the proof
is beyond the level of this course. In fact, we differentiate exactly the way you might
expect,

f ′(x) = d

dx
f (x) = d

dx
[b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + · · ·]

= b1 + 2b2(x − c) + 3b3(x − c)2 +· · · =
∞∑

k=1

bkk(x − c)k−1,

Differentiating a power series

where the radius of convergence of the resulting series is also r . Since we find the deriva-
tive by differentiating each term in the series, we call this term-by-term differentiation.
Likewise, we can integrate a convergent power series term-by-term:∫

f (x) dx =
∫ ∞∑

k=0

bk(x − c)k dx =
∞∑

k=0

bk

∫
(x − c)k dx

=
∞∑

k=0

bk
(x − c)k+1

k + 1
+ K ,

Integrating a power series

where the radius of convergence of the resulting series is again r and where K is a constant
of integration. The proof of these two results can be found in a text on advanced calculus.
It’s important to recognize that these two results are not obvious. They are not simply
an application of the rule that a derivative or integral of a sum is simply the sum of the
derivatives or integrals, respectively, since a series is not a sum, but rather, a limit of a sum.
(What’s the difference, anyway?) Further, these results are true for power series, but are not
true for series in general.

We summarize the term-by-term differentiation and integration of power series in the
following.

Suppose that

f (x) =
∞∑

k=0

bk(x − c)k,

where the radius of convergence is r > 0. Then,

f ′(x) =
∞∑

k=0

kbk(x − c)k−1

and ∫
f (x) dx =

∞∑
k=0

bk

k + 1
(x − c)k+1 + K ,

where both of these series also have radius of convergence r .
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EXAMPLE 6.5 A Convergent Series Whose
Series of Derivatives Diverges

Find the interval of convergence of the series
∞∑

k=1

sin (k3x)

k2
and show that the series of

derivatives does not converge for any x .

Solution Notice that ∣∣∣∣ sin (k3x)

k2

∣∣∣∣ ≤ 1

k2
, for all x,

since |sin (k3x)| ≤ 1. Further,
∞∑

k=1

1

k2
is a convergent p-series (p = 2 > 1) and so, it

follows from the Comparison Test that
∞∑

k=0

sin (k3x)

k2
converges absolutely, for all x . On

the other hand, the series of derivatives (found by differentiating the series term-by-
term) is

∞∑
k=1

d

dx

[
sin (k3x)

k2

]
=

∞∑
k=1

k3 cos (k3x)

k2
=

∞∑
k=1

[k cos (k3x)],

which diverges for all x , by the kth-term test for divergence, since the terms do not tend
to zero as k → ∞, for any x . �

Keep in mind that
∞∑

k=1

sin (k3x)

k2
is not a power series. (Why not?) The result of exam-

ple 6.5 (a convergent series whose series of derivatives diverges) cannot occur with any
power series with radius of convergence r > 0.

In example 6.6, we find that once we have a convergent power series representation for
a given function, we can use this to obtain power series representations for any number of
other functions, by differentiating and integrating the series term by term.

EXAMPLE 6.6 Differentiating and Integrating a Power Series

Use the power series
∞∑

k=0
(−1)k xk to find power series representations of

1

(1 + x)2
,

1

1 + x2

and tan−1 x .

Solution Notice that
∞∑

k=0
(−1)k xk =

∞∑
k=0

(−x)k is a geometric series with ratio r = −x .

This series converges, then, whenever |r | = |−x | = |x | < 1, to

a

1 − r
= 1

1 − (−x)
= 1

1 + x
.

That is, for −1 < x < 1,

1

1 + x
=

∞∑
k=0

(−1)k xk . (6.2)

Differentiating both sides of (6.2), we get

−1

(1 + x)2
=

∞∑
k=0

(−1)kkxk−1, for −1 < x < 1.
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Multiplying both sides by −1 gives us a new power series representation:

1

(1 + x)2
=

∞∑
k=0

(−1)k+1kxk−1,

valid for −1 < x < 1. Notice that we can also obtain a new power series from (6.2) by
substitution. For instance, if we replace x with x2, we get

1

1 + x2
=

∞∑
k=0

(−1)k(x2)k =
∞∑

k=0

(−1)k x2k, (6.3)

valid for −1 < x2 < 1 (which is equivalent to having x2 < 1 or −1 < x < 1).
Integrating both sides of (6.3) gives us∫

1

1 + x2
dx =

∞∑
k=0

(−1)k
∫

x2k dx =
∞∑

k=0

(−1)k x2k+1

2k + 1
+ c. (6.4)

You should recognize the integral on the left-hand side of (6.4) as tan−1 x . That is,

tan−1 x =
∞∑

k=0

(−1)k x2k+1

2k + 1
+ c, for −1 < x < 1. (6.5)

Taking x = 0 gives us

tan−1 0 =
∞∑

k=0

(−1)k02k+1

2k + 1
+ c = c,

so that c = tan−1 0 = 0. Equation (6.5) now gives us a power series representation for
tan−1 x , namely:

tan−1 x =
∞∑

k=0

(−1)k x2k+1

2k + 1
= x − 1

3
x3 + 1

5
x5 − 1

7
x7 + · · · , for −1 < x < 1.

�

Notice that working as in example 6.6, we can produce power series representations
of any number of functions. In section 7.7, we present a systematic method for producing
power series representations for a wide range of functions.

EXERCISES 7.6

WRITING EXERCISES

1. Power series have the form
∞∑

k=0
ak(x − c)k . Explain why the

farther x is from c, the larger the terms of the series are and the
less likely the series is to converge. Describe how this general
trend relates to the radius of convergence.

2. Applying the Ratio Test to
∞∑

k=0
ak(x − c)k requires you to eval-

uate lim
k→∞

∣∣∣∣ak+1

ak
(x − c)

∣∣∣∣. For x = c, this limit equals 0 and

the series converges. As x increases or decreases, |x − c| in-
creases. If the series has a finite radius of convergence r > 0,
what is the value of the limit when |x − c| = r? Explain
how the limit changes when |x − c| < r and |x − c| > r and

how this determines the convergence or divergence of the
series.

3. As shown in example 6.2,
∞∑

k=0

10k

k!
(x − 1)k converges for all x .

If x = 1001, the value of (x − 1)k = 1000k gets very large very
fast, as k increases. Explain why, for the series to converge, the
value of k! must get large faster than 1000k . To illustrate how
fast the factorial grows, compute 50!, 100! and 200! (if your
calculator can handle these).

4. In a power series representation of
√

x + 1 about c = 0, ex-
plain why the radius of convergence cannot be greater than 1.
(Think about the domain of

√
x + 1.)
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In exercises 1–10, find a power series representation of f (x)
about c ��� 0 (refer to example 6.6). Also, determine the radius
and interval of convergence and graph f (x) together with the

partial sums
3∑

k���0
akxk and

6∑
k���0

akxk.

1. f (x) = 2

1 − x
2. f (x) = 3

x − 1

3. f (x) = 3

1 + x2
4. f (x) = 2

1 − x2

5. f (x) = 2x

1 − x3
6. f (x) = 3x

1 + x2

7. f (x) = 4

1 + 4x
8. f (x) = 3

1 − 4x

9. f (x) = 2

4 + x
10. f (x) = 3

6 − x

In exercises 11–16, determine the interval of convergence and
the function to which the given power series converges.

11.
∞∑

k=0

(x + 2)k 12.
∞∑

k=0

(x − 3)k

13.
∞∑

k=0

(2x − 1)k 14.
∞∑

k=0

(3x + 1)k

15.
∞∑

k=0

(−1)k

(
x

2

)k

16.
∞∑

k=0

3

(
x

4

)k

In exercises 17–34, determine the radius and interval of
convergence.

17.
∞∑

k=0

2k

k!
(x − 2)k 18.

∞∑
k=0

3k

k!
xk

19.
∞∑

k=0

k

4k
xk 20.

∞∑
k=0

k

2k
xk

21.
∞∑

k=1

(−1)k

k3k
(x − 1)k 22.

∞∑
k=1

(−1)k+1

k4k
(x + 2)k

23.
∞∑

k=0

k!(x + 1)k 24.
∞∑

k=0

k!(x − 2)k

25.
∞∑

k=1

1

k
(x − 1)k 26.

∞∑
k=0

k(x − 2)k

27.
∞∑

k=0

k2(x − 3)k 28.
∞∑

k=1

1

k2
(x + 2)k

29.
∞∑

k=0

k!

(2k)!
xk 30.

∞∑
k=0

(k!)2

(2k)!
xk

31.
∞∑

k=1

2k

k2
(x + 2)k 32.

∞∑
k=0

k2

k!
(x + 1)k

33.
∞∑

k=1

4k

√
k

xk 34.
∞∑

k=1

(−1)k xk

√
k

In exercises 35–42, find a power series representation and ra-
dius of convergence by integrating or differentiating one of the
series from exercises 1–10.

35. f (x) = 3 tan−1 x 36. f (x) = 2 ln (1 − x)

37. f (x) = 2x

(1 − x2)2
38. f (x) = 3

(x − 1)2

39. f (x) = ln (1 + x2) 40. f (x) = ln (1 + 4x)

41. f (x) = 1

(1 + 4x)2
42. f (x) = 2

(4 + x)2

In exercises 43–46, find the interval of convergence of the (non-
power) series and the corresponding series of derivatives.

43.
∞∑

k=1

cos (k3x)

k2
44.

∞∑
k=1

cos (x/k)

k

45.
∞∑

k=0

ekx 46.
∞∑

k=0

e−2kx

47. For any constants a and b > 0, determine the interval and ra-

dius of convergence of
∞∑

k=0

(x − a)k

bk
.

48. Prove that if
∞∑

k=0
ak xk has radius of convergence r , with 0 <

r < ∞, then
∞∑

k=0
ak x2k has radius of convergence

√
r .

49. If
∞∑

k=0
ak xk has radius of convergence r , with 0 < r < ∞, de-

termine the radius of convergence of
∞∑

k=0
ak(x − c)k for any

constant c.

50. If
∞∑

k=0
ak xk has radius of convergence r , with 0 < r < ∞, deter-

mine the radius of convergence of
∞∑

k=0
ak

( x

b

)k
for any constant

b 	= 0.

51. Show that f (x) = x + 1

(1 − x)2
=

2x
1−x + 1

1 − x
has the power se-

ries representation f (x) = 1 + 3x + 5x2 + 7x3 + 9x4 + · · · .
Find the radius of convergence. Set x = 1

1000
and discuss the

interesting decimal representation of
1,001,000

998,001
.

52. Use long division to show that
1

1 − x
= 1 + x + x2 +

x3 + · · · .

53. Even great mathematicians can make mistakes. Leonhard Euler

started with the equation
x

x − 1
+ x

1 − x
= 0, rewrote it as

1

1 − 1/x
+ x

1 − x
= 0, found power series representations for

each function and concluded that · · · + 1

x2
+ 1

x
+ 1 + x +
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x2 + · · · = 0. Substitute x = 1 to show that the conclusion is
false, then find the mistake in Euler’s derivation.

54. If your CAS or calculator has a command named “Taylor,” use
it to verify your answers to exercises 35–42.

55. An electric dipole consists of a charge q located at x = 1 and
a charge −q located at x = −1. The electric field at any x > 1

is given by E(x) = kq

(x − 1)2
− kq

(x + 1)2
for some constant k.

Find a power series representation for E(x).

56. Show that a power series representation of f (x) = ln (1 + x2)

is given by
∞∑

k=0
(−1)k x2k+2

k + 1
. For the partial sums Pn(x) =

n∑
k=0

(−1)k x2k+2

k + 1
, compute | f (0.9) − Pn(0.9)| for each of n =

2, 4, 6. Discuss the pattern. Then compute | f (1.1) − Pn(1.1)|
for each of n = 2, 4, 6. Discuss the pattern. Discuss the rele-
vance of the radius of convergence to these calculations.

EXPLORATORY EXERCISES

1. Note that the radius of convergence in each of exercises
1–5 is 1. Given that the functions in exercises 1, 2, 4 and

5 are undefined at x = 1, explain why the radius of conver-
gence can’t be larger than 1. The restricted radius in exer-
cise 3 can be understood using complex numbers. Show that
1 + x2 = 0 for x = ±i , where i = √−1. In general, a com-
plex number a + bi is associated with the point (a, b). Find
the “distance” between the complex numbers 0 and i by find-
ing the distance between the associated points (0, 0) and
(0, 1). Discuss how this compares to the radius of conver-
gence. Then use the ideas in this exercise to quickly con-
jecture the radius of convergence of power series with cen-

ter c = 0 for the functions f (x) = 4

1 + 4x
, f (x) = 2

4 + x
and

f (x) = 2

4 + x2
.

2. For each series f (x), compare the intervals of convergence
of f (x) and

∫
f (x) dx , where the antiderivative is taken

term by term. (a) f (x) =
∞∑

k=0
(−1)k xk ; (b) f (x) =

∞∑
k=0

√
kxk ;

(c) f (x) =
∞∑

k=0

1

k
xk . As stated in the text, the radius of conver-

gence remains the same after integration (or differentiation).
Based on the examples in this exercise, does integration make
it more or less likely that the series will converge at the end-
points? Conversely, will differentiation make it more or less
likely that the series will converge at the endpoints?

7.7 TAYLOR SERIES

You may still be wondering about the reason why we have developed series. Each time we
have developed a new concept, we have worked hard to build a case for why we want to do
what we’re doing. For example, in developing the derivative, we set out to find the slope
of a tangent line and to find instantaneous velocity, only to find that they were essentially
the same thing. When we developed the definite integral, we did so in the course of trying
to find area under the curve. But, we have not yet completely revealed why we’re pursuing
series, even though we’ve been developing them for more than five sections now. Well, the
punchline is close at hand. In this section, we develop a compelling reason for considering
series. They are not merely another mathematical curiosity, but rather, are an essential means
for exploring and computing with transcendental functions (e.g., sin x, cos x, ln x, ex , etc.).

Suppose that the power series
∞∑

k=0
bk(x − c)k has radius of convergence r > 0. As we’ve

observed, this means that the series converges absolutely to some function f on the interval
(c − r, c + r ). We have

f (x) =
∞∑

k=0

bk(x − c)k = b0 + b1(x − c) + b2(x − c)2 + b3(x − c)3 + b4(x − c)4 + · · · ,

for each x ∈ (c − r, c + r ). Differentiating term by term, we get that

f ′(x) =
∞∑

k=0

bkk(x − c)k−1 = b1 + 2b2(x − c) + 3b3(x − c)2 + 4b4(x − c)3 + · · · ,
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again, for each x ∈ (c − r, c + r ). Likewise, we get

f ′′(x) =
∞∑

k=0

bkk(k − 1)(x − c)k−2 = 2b2 + 3 · 2b3(x − c) + 4 · 3b4(x − c)2 + · · ·

and

f ′′′(x) =
∞∑

k=0

bkk(k − 1)(k − 2)(x − c)k−3 = 3 · 2b3 + 4 · 3 · 2b4(x − c) + · · ·

and so on (all valid for c − r < x < c + r ). Notice that if we substitute x = c in each of
the above derivatives, all the terms of the series drop out, except one. We get

f (c) = b0,

f ′(c) = b1,

f ′′(c) = 2b2,

f ′′′(c) = 3! b3

and so on. Observe, that in general, we have

f (k)(c) = k! bk . (7.1)

Solving (7.1) for bk , we have

bk = f (k)(c)

k!
, for k = 0, 1, 2, . . . .

To summarize, we found that if
∞∑

k=0
bk(x − c)k is a convergent power series with radius of

convergence r > 0, then the series converges to some function f that we can write as

f (x) =
∞∑

k=0

bk(x − c)k =
∞∑

k=0

f (k)(c)

k!
(x − c)k, for x ∈ (c − r, c + r ).

Now, think about this problem from another angle. Instead of starting with a series, sup-
pose that you start with an infinitely differentiable function, f (i.e., f can be differentiated
infinitely often). Then, we can construct the series

Taylor series expansion of f (x) about x = c

∞∑
k=0

f (k)(c)

k!
(x − c)k,

called a Taylor series expansion for f . (See the historical note on Brook Taylor in sec-
tion 4.6.) There are two important questions we need to answer.

� Does a series constructed in this way converge? If so, what is its radius of
convergence?

� If the series converges, it converges to a function. What is that function? (For
instance, is it f ?)

We can answer the first of these questions on a case-by-case basis, usually by applying
the Ratio Test. The second question will require further insight.
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EXAMPLE 7.1 Constructing a Taylor Series Expansion

Construct the Taylor series expansion for f (x) = ex , about x = 0 (i.e., take c = 0).

Solution Here, we have the extremely simple case where

f ′(x) = ex , f ′′(x) = ex and so on, f (k)(x) = ex , for k = 0, 1, 2, . . . .

This gives us the Taylor series
∞∑

k=0

f (k)(0)

k!
(x − 0)k =

∞∑
k=0

e0

k!
xk =

∞∑
k=0

1

k!
xk .

From the Ratio Test, we have

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

|x |k+1

(k + 1)!

k!

|x |k = |x | lim
k→∞

k!

(k + 1) k!

= |x | lim
k→∞

1

k + 1
= |x | (0) = 0 < 1, for all x .

So, the Taylor series
∞∑

k=0

1

k!
xk converges for all real numbers x . At this point, though, we

do not know the function to which the series converges. (Could it be ex ?) �

REMARK 7.1

The special case of a Taylor series
expansion about x = 0 is often
called a Maclaurin series. (See the
historical note about Colin
Maclaurin in section 7.3.) That is,

the series
∞∑

k=0

f (k)(0)

k!
xk is the

Maclaurin series expansion for f .

Before we present any further examples of Taylor series, let’s see if we can determine
the function to which a given Taylor series converges. First, notice that the partial sums of
a Taylor series (like any power series) are simply polynomials. We define

Pn(x) =
n∑

k=0

f (k)(c)

k!
(x − c)k

= f (c) + f ′(c) (x − c) + f ′′(c)

2!
(x − c)2 + · · · + f (n)(c)

n!
(x − c)n.

Observe that Pn(x) is a polynomial of degree n, as
f (k)(c)

k!
is a constant for each k. We refer

to Pn as the Taylor polynomial of degree n for f expanded about x = c.

EXAMPLE 7.2 Constructing and Graphing Taylor Polynomials

For f (x) = ex , find the Taylor polynomial of degree n expanded about x = 0.

x
2 4�2

�2

2

4

6

8
y � ex

y � P1(x)

y

FIGURE 7.39a
y = ex and y = P1(x).

Solution As in example 7.1, we have that f (k)(x) = ex , for all k. So, we have the nth
degree Taylor polynomial is

Pn(x) =
n∑

k=0

f (k)(0)

k!
(x − 0)k =

n∑
k=0

e0

k!
xk

=
n∑

k=0

1

k!
xk = 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
.

Since we established in example 7.1 that the Taylor series for f (x) = ex about x = 0
converges for all x , this says that the sequence of partial sums (i.e., the sequence of
Taylor polynomials) converges for all x . In an effort to determine the function to which
the Taylor polynomials are converging, we have plotted P1(x), P2(x), P3(x) and P4(x),
together with the graph of f (x) = ex in Figures 7.39a–d, respectively.
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x
2 4�2

�2

2

4

6

8 y � ex

y � P2(x)

y

x
2 4�2

�2

2

4

6

8
y � ex

y � P3(x)

y

x
2 4�2

�2

2

4

6

8 y � ex

y � P4(x)

y

FIGURE 7.39b
y = ex and y = P2(x).

FIGURE 7.39c
y = ex and y = P3(x).

FIGURE 7.39d
y = ex and y = P4(x).

Notice that as n gets larger, the graphs of Pn(x) appear (at least on the inter-
val displayed) to be approaching the graph of f (x) = ex . Since we know that the
Taylor series converges and the graphical evidence suggests that the partial sums of
the series are approaching f (x) = ex , it is reasonable to conjecture that the series con-
verges to ex . This is, in fact, exactly what is happening, as we can prove using Theo-
rems 7.1 and 7.2. �

THEOREM 7.1 (Taylor’s Theorem)

Suppose that f has (n + 1) derivatives on the interval (c − r, c + r ), for some r > 0.
Then, for x ∈ (c − r, c + r ), f (x) ≈ Pn(x) and the error in using Pn(x) to
approximate f (x) is

Rn(x) = f (x) − Pn(x) = f (n+1)(z)

(n + 1)!
(x − c)n+1, (7.2)

for some number z between x and c.

The error term Rn(x) in (7.2) is often called the remainder term. Note that this term
looks very much like the first neglected term of the Taylor series, except that f (n+1) is
evaluated at some (unknown) number z between x and c, instead of at c. This remainder
term serves two purposes: it enables us to obtain an estimate of the error in using a Taylor
polynomial to approximate a given function and as we’ll see in the next theorem, it gives
us the means to prove that a Taylor series for a given function f converges to f .

The proof of Taylor’s Theorem is somewhat technical and so we leave it for a more
advanced text.

Note: If we could show that

lim
n→∞ Rn(x) = 0, for all x in (c − r, c + r ),
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then we would have that

0 = lim
n→∞ Rn(x) = lim

n→∞[ f (x) − Pn(x)] = f (x) − lim
n→∞ Pn(x)

or

lim
n→∞ Pn(x) = f (x), for all x ∈ (c − r, c + r ).

That is, the sequence of partial sums of the Taylor series (i.e., the sequence of Taylor
polynomials) converges to f (x) for each x ∈ (c − r, c + r ). We summarize this in
Theorem 7.2.

THEOREM 7.2

Suppose that f has derivatives of all orders in the interval (c − r, c + r ), for some
r > 0 and that lim

n→∞ Rn(x) = 0, for all x in (c − r, c + r ). Then, the Taylor series for f

expanded about x = c converges to f (x), that is,

f (x) =
∞∑

k=0

f (k)(c)

k!
(x − c)k,

for all x in (c − r, c + r ).

REMARK 7.2

Observe that for n = 0, Taylor’s
Theorem simplifies to a very
familiar result. We have

R0(x) = f (x) − P0(x)

= f ′(z)

(0 + 1)!
(x − c)0+1.

Since P0(x) = f (c), we have
simply

f (x) − f (c) = f ′(z)(x − c).

Dividing by (x − c), gives us

f (x) − f (c)

x − c
= f ′(z),

which is the conclusion of the
Mean Value Theorem. In this
way, observe that Taylor’s
Theorem is a generalization of the
Mean Value Theorem.

We now return to the Taylor series expansion of f (x) = ex about x = 0, constructed
in example 7.1 and investigated further in example 7.2 and prove that it converges to ex , as
we had suspected.

EXAMPLE 7.3 Proving That a Taylor Series Converges
to the Desired Function

Show that the Taylor series for f (x) = ex expanded about x = 0 converges to ex .

Solution We already found the indicated Taylor series,
∞∑

k=0

1

k!
xk in example 7.1. Here,

we have f (k)(x) = ex , for all k = 0, 1, 2, . . . . This gives us the remainder term

Rn(x) = f (n+1)(z)

(n + 1)!
(x − 0)n+1 = ez

(n + 1)!
xn+1, (7.3)

where z is somewhere between x and 0 (and depends also on the value of n). We first
find a bound on the size of ez . Notice that if x > 0, then 0 < z < x and so,

ez < ex .

If x ≤ 0, then x ≤ z ≤ 0, so that

ez ≤ e0 = 1.

We define M to be the larger of these two bounds on ez . That is, we let

M = max{ex , 1}.
Then, for any x and any n, we have

ez ≤ M.
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Together with (7.3), this gives us the error estimate

|Rn(x)| = ez

(n + 1)!

∣∣x∣∣n+1 ≤ M
|x |n+1

(n + 1)!
. (7.4)

To prove that the Taylor series converges to ex , we want to use (7.4) to show that

lim
n→∞Rn(x) = 0, for all x . However, for any given x , how can we compute lim

n→∞
|x |n+1

(n + 1)!
?

While we cannot do so directly, we can use the following indirect approach. We consider

the series
∞∑

n=0

|x |n+1

(n + 1)!
, as follows. Applying the Ratio Test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x |n+2

(n + 2)!

(n + 1)!

|x |n+1
= |x | lim

k→∞
1

n + 2
= 0,

for all x . This then says that the series
∞∑

n=0

|x |n+1

(n + 1)!
converges absolutely for all x . By the

kth-term test for divergence, since this last series converges, its general term must tend
to 0 as n → ∞. That is,

lim
n→∞

|x |n+1

(n + 1)!
= 0

and so, from (7.4), lim
n→∞ Rn(x) = 0, for all x . From Theorem 7.2, we now have that the

Taylor series converges to ex for all x . That is,

ex =
∞∑

k=0

1

k!
xk = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · . (7.5)

�

The trick, if there is one, in finding a Taylor series expansion is in accurately calculating
enough derivatives for you to recognize the general form of the nth derivative. So, take your
time and BE CAREFUL! Once this is done, you need to show that Rn(x) → 0, as n → ∞,
for all x , to ensure that the series converges to the function you are expanding.

One of the reasons for calculating Taylor series is that we can use their partial sums to
compute approximate values of a function.

EXAMPLE 7.4 Using a Taylor Series to Obtain an Approximation of e

Use the Taylor series for ex in (7.5) to obtain an approximation to the number e.

Solution We have

e = e1 =
∞∑

k=0

1

k!
1k =

∞∑
k=0

1

k!
.

We list some partial sums of this series in the accompanying table. From this we get the
very accurate approximation

e ≈ 2.718281828. �

M
M∑

k���0

1
k!

5 2.716666667

10 2.718281801

15 2.718281828

20 2.718281828

EXAMPLE 7.5 A Taylor Series Expansion of sin x

Find the Taylor series for f (x) = sin x , expanded about x = π
2 and prove that the series

converges to sin x for all x .
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Solution In this case, the Taylor series is

∞∑
k=0

f (k)
(

π
2

)
k!

(
x − π

2

)k

.

First, we compute some derivatives and their value at x = π
2 . We have

f (x) = sin x f
(

π
2

) = 1,

f ′(x) = cos x f ′(π
2

) = 0,

f ′′(x) = −sin x f ′′(π
2

) = −1,

f ′′′(x) = −cos x f ′′′(π
2

) = 0,

f (4)(x) = sin x f (4)
(

π
2

) = 1

and so on. Recognizing that every other term is zero and every other term is ±1, we see
that the Taylor series is

∞∑
k=0

f (k)
(

π
2

)
k!

(
x − π

2

)k

= 1 − 1

2

(
x − π

2

)2

+ 1

4!

(
x − π

2

)4

− 1

6!

(
x − π

2

)6

+ · · ·

=
∞∑

k=0

(−1)k

(2k)!

(
x − π

2

)2k

.

In order to test the series for convergence, we consider the remainder term

|Rn(x)| =
∣∣∣∣∣ f (n+1)(z)

(n + 1)!

(
x − π

2

)n+1
∣∣∣∣∣ , (7.6)

for some z between x and π
2 . From our derivative calculations, note that

f (n+1)(z) =
{± cos z, if n is even
± sin z, if n is odd

.

From this, observe that ∣∣ f (n+1)(z)
∣∣ ≤ 1,

for every n. (Notice that this is true whether n is even or odd.) From (7.6), we now have

|Rn(x)| =
∣∣∣∣∣ f (n+1)(z)

(n + 1)!

∣∣∣∣∣
∣∣∣∣∣x − π

2

∣∣∣∣∣
n+1

≤ 1

(n + 1)!

∣∣∣∣∣x − π

2

∣∣∣∣∣
n+1

→ 0,

as n → ∞, for every x , as in example 7.3. This says that

sin x =
∞∑

k=0

(−1)k

(2k)!

(
x − π

2

)2k

= 1 − 1

2

(
x − π

2

)2

+ 1

4!

(
x − π

2

)4

− · · · ,

for all x . In Figures 7.40a–d, we show graphs of f (x) = sin x together with the Taylor
polynomials P2(x), P4(x), P6(x) and P8(x) (the first few partial sums of the series). Notice
that the higher the degree of the Taylor polynomial is, the larger the interval is over which
the polynomial provides a close approximation to f (x) = sin x .
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y

x
2 4 6�2

�1

1

y � sin x
y � P2(x)

y

x
2 4 6�2

�1

1

y � sin x

y � P4(x)

FIGURE 7.40a
y = sin x and y = P2(x).

FIGURE 7.40b
y = sin x and y = P4(x).

y

x
2 4 6�2

�1

1

y � sin x

y � P6(x)

y

x
2 4 6�2

�1

1

y � sin x

y � P8(x)

FIGURE 7.40c
y = sin x and y = P6(x).

FIGURE 7.40d
y = sin x and y = P8(x).

�

In example 7.6, we illustrate how to use Taylor’s Theorem to estimate the error in using
a Taylor polynomial to approximate the value of a function.

EXAMPLE 7.6 Estimating the Error in a Taylor
Polynomial Approximation

Use a Taylor polynomial to approximate the value of ln (1.1) and estimate the error in
this approximation.

Solution First, note that since ln 1 is known exactly and 1 is close to 1.1 (Why would
this matter?), we expand f (x) = ln x in a Taylor series about x = 1. We compute an
adequate number of derivatives so that the pattern becomes clear. We have

f (x) = ln x f (1) = 0

f ′(x) = x−1 f ′(1) = 1

f ′′(x) = −x−2 f ′′(1) = −1

f ′′′(x) = 2x−3 f ′′′(1) = 2

f (4)(x) = −3 · 2x−4 f (4)(1) = −3!

f (5)(x) = 4! x−5 f (5)(1) = 4!
...

...
f (k)(x) = (−1)k+1(k − 1)! x−k f (k)(1) = (−1)k+1(k − 1)! (k ≥ 1).
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We get the Taylor series

∞∑
k=0

f (k)(1)

k!
(x − 1)k

= (x − 1) − 1

2
(x − 1)2 + 2

3!
(x − 1)3 + · · · + (−1)k+1 (k − 1)!

k!
(x − 1)k + · · ·

=
∞∑

k=1

(−1)k+1

k
(x − 1)k .

We could use the remainder term to show that the series converges to f (x) = ln x , for
0 < x < 2, but this is not the original question here. (This is left as an exercise.) As an
illustration, we construct the Taylor polynomial, P4(x),

P4(x) =
4∑

k=1

(−1)k+1

k
(x − 1)k

from the preceding

= (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − 1

4
(x − 1)4.

We show a graph of y = ln x and y = P4(x) in Figure 7.41. Taking x = 1.1 gives us the
approximation

ln (1.1) ≈ P4(1.1) = 0.1 − 1

2
(0.1)2 + 1

3
(0.1)3 − 1

4
(0.1)4 ≈ 0.095308333.

2 31

2

�2

�4

y � ln x

y � P4(x)

y

x

FIGURE 7.41
y = ln x and y = P4(x).

We can use the remainder term to estimate the error in this approximation. We have

|Error| = | ln (1.1) − P4(1.1)| = |R4(1.1)|

=
∣∣∣∣ f (4+1)(z)

(4 + 1)!
(1.1 − 1)4+1

∣∣∣∣ = 4!|z|−5

5!
(0.1)5,

where z is between 1 and 1.1. This gives us the following bound on the error:

|Error| = (0.1)5

5z5
<

(0.1)5

5(15)
= 0.000002,

since 1 < z < 1.1 implies that
1

z
<

1

1
= 1. Another way to think of this is that our

approximation of ln (1.1) ≈ 0.095308333 is off by no more than ±0.000002. �

A more significant question related to example 7.6 is to determine how many terms of
the Taylor series are needed in order to guarantee a given accuracy. We use the remainder
term to accomplish this in example 7.7.

EXAMPLE 7.7 Finding the Number of Terms Needed
for a Given Accuracy

Find the number of terms in the Taylor series for f (x) = ln x expanded about x = 1
that will guarantee an accuracy of at least 1 × 10−10 in the approximation of ln (1.1) and
ln (1.5).
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Solution From our calculations in example 7.6 and (7.2), we have that for some number
z between 1 and 1.1,

|Rn(1.1)| =
∣∣∣∣ f (n+1)(z)

(n + 1)!
(1.1 − 1)n+1

∣∣∣∣
= n!|z|−n−1

(n + 1)!
(0.1)n+1 = (0.1)n+1

(n + 1) zn+1
<

(0.1)n+1

n + 1
,

since 1 < z < 1.1 implies that
1

z
<

1

1
= 1. Further, since we want the error to be less

than 1 × 10−10, we require that

|Rn(1.1)| <
(0.1)n+1

n + 1
< 1 × 10−10.

You can solve this inequality for n by trial and error to find that n = 9 will guarantee the
required accuracy. Notice that larger values of n will also guarantee this accuracy, since
(0.1)n+1

n + 1
is a decreasing function of n. We then have the approximation

ln (1.1) ≈ P9(1.1) =
9∑

k=0

(−1)k+1

k
(1.1 − 1)k

= (0.1) − 1

2
(0.1)2 + 1

3
(0.1)3 − 1

4
(0.1)4 + 1

5
(0.1)5

− 1

6
(0.1)6 + 1

7
(0.1)7 − 1

8
(0.1)8 + 1

9
(0.1)9

≈ 0.095310179813,

which from our error estimate we know is correct to within 1 × 10−10. We show
a graph of y = ln x and y = P9(x) in Figure 7.42. In comparing Figure 7.42 with
Figure 7.41, observe that while P9(x) provides an improved approximation to P4(x)
over the interval of convergence (0, 2), it does not provide a better approximation outside
of this interval.

y

x
1 2 3

�2

�4

2

y � ln x

y � P9(x)

FIGURE 7.42
y = ln x and y = P9(x).

Similarly, notice that for some number z between 1 and 1.5,

|Rn(1.5)| =
∣∣∣∣ f (n+1)(z)

(n + 1)!
(1.5 − 1)n+1

∣∣∣∣ = n!|z|−n−1

(n + 1)!
(0.5)n+1

= (0.5)n+1

(n + 1) zn+1
<

(0.5)n+1

n + 1
,

since 1 < z < 1.5 implies that
1

z
<

1

1
= 1. So, here we require that

|Rn(1.5)| <
(0.5)n+1

n + 1
< 1 × 10−10.

Solving this by trial and error shows that n = 28 will guarantee the required accuracy.
Observe that this says that many more terms are needed to approximate f (1.5) than for
f (1.1), to obtain the same accuracy. This further illustrates the general principle that the
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farther away x is from the point about which we expand, the slower the convergence of
the Taylor series will be. �

For your convenience, we have compiled a list of common Taylor series in the following
table.

Interval of
Taylor Series Convergence Where to find

ex =
∞∑

k=0

1

k!
xk = 1 + x + 1

2
x2 + 1

3!
x3 + 1

4!
x4 + · · · (−∞, ∞) examples 7.1 and 7.3

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · (−∞, ∞) exercise 2

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1 − 1

2
x2 + 1

4!
x4 − 1

6!
x6 + · · · (−∞, ∞) exercise 1

sin x =
∞∑

k=0

(−1)k

(2k)!

(
x − π

2

)2k

= 1 − 1

2

(
x − π

2

)2

+ 1

4!

(
x − π

2

)4

− · · · (−∞, ∞) example 7.5

ln x =
∞∑

k=1

(−1)k+1

k
(x − 1)k = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − · · · (0, 2] examples 7.6, 7.7

tan−1 x =
∞∑

k=0

(−1)k

2k + 1
x2k+1 = x − 1

3
x3 + 1

5
x5 − 1

7
x7 + · · · (−1, 1) example 6.6

Notice that once you have found a Taylor series expansion for a given function, you
can find any number of other Taylor series simply by making a substitution.

EXAMPLE 7.8 Finding New Taylor Series from Old Ones

Find Taylor series in powers of x for e2x , ex2
and e−2x .

Solution Rather than compute the Taylor series for these functions from scratch, recall
that we had established in example 7.3 that

et =
∞∑

k=0

1

k!
t k = 1 + t + 1

2!
t2 + 1

3!
t3 + 1

4!
t4 + · · · , (7.7)

for all t ε (−∞, ∞). We use the variable t here instead of x , so that we can more easily
make substitutions. Taking t = 2x in (7.7), we get the new Taylor series

e2x =
∞∑

k=0

1

k!
(2x)k =

∞∑
k=0

2k

k!
xk = 1 + 2x + 22

2!
x2 + 23

3!
x3 + · · · .

Similarly, letting t = x2 in (7.7), we get the Taylor series

ex2 =
∞∑

k=0

1

k!
(x2)k =

∞∑
k=0

1

k!
x2k = 1 + x2 + 1

2!
x4 + 1

3!
x6 + · · · .
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Finally, taking t = −2x in (7.7), we get

e−2x =
∞∑

k=0

1

k!
(−2x)k =

∞∑
k=0

(−1)k

k!
2k xk = 1 − 2x + 22

2!
x2 − 23

3!
x3 + · · · .

Notice that all of these last three series converge for all x ε (−∞, ∞). (Why is that?) �

EXERCISES 7.7

WRITING EXERCISES

1. Describe how the Taylor polynomial with n = 1 compares
to the linear approximation (see section 3.1). Give an analo-
gous interpretation of the Taylor polynomial with n = 2. That
is, how do various graphical properties (position, slope, con-
cavity) of the Taylor polynomial compare with those of the
function f (x) at x = c?

2. Briefly discuss how a computer might use Taylor polynomials
to compute sin (1.2). In particular, how would the computer
know how many terms to compute? How would the number
of terms necessary to compute sin (1.2) compare to the num-
ber needed to compute sin (100)? Describe a trick that would
make it much easier for the computer to compute sin (100).
(Hint: The sine function is periodic.)

3. Taylor polynomials are built up from a knowledge of
f (c), f ′(c), f ′′(c) and so on. Explain in graphical terms why
information at one point (e.g., position, slope, concavity, etc.)
can be used to construct the graph of the function on the entire
interval of convergence.

4. If f (c) is the position of an object at time t = c, then f ′(c)
is the object’s velocity and f ′′(c) is the object’s acceleration
at time c. Explain in physical terms how knowledge of these
values at one time (plus f ′′′(c), etc.) can be used to predict the
position of the object on the interval of convergence.

5. Our table of common Taylor series lists two different series for
sin x . Explain how the same function could have two different
Taylor series representations. For a given problem (e.g., ap-
proximate sin 2), explain how you would choose which Taylor
series to use.

6. Explain why the Taylor series with center c = 0 of f (x) =
x2 − 1 is simply x2 − 1.

In exercises 1–8, find the Maclaurin series (i.e., Taylor series
about c ��� 0) and its interval of convergence.

1. f (x) = cos x 2. f (x) = sin x

3. f (x) = 3

x − 2
4. f (x) = cos 2x

5. f (x) = ln (1 + x) 6. f (x) = e−x

7. f (x) = 1/(1 + x)2 8. f (x) = 1/(1 − x)

In exercises 9–14, find the Taylor series about the indicated
center and determine the interval of convergence.

9. f (x) = ex−1, c = 1 10. f (x) = cos x, c = −π/2

11. f (x) = ln x, c = e 12. f (x) = ex , c = 2

13. f (x) = 1/x, c = 1 14. f (x) = 1/x, c = −1

In exercises 15–22, graph f (x) and the Taylor polynomials for
the indicated center c and degree n.

15. f (x) = cos x, c = 0, n = 5; n = 9

16. f (x) = ln x, c = 1, n = 4; n = 8

17. f (x) = √
x, c = 1, n = 3; n = 6

18. f (x) = 1

1 + x
, c = 0, n = 4; n = 8

19. f (x) = ex , c = 2, n = 3; n = 6

20. f (x) = sin−1 x, c = 0, n = 4; n = 8

21. f (x) = 1√
x

, c = 4, n = 2; n = 4

22. f (x) = √
1 + x2, c = 0, n = 2; n = 4

In exercises 23–26, prove that the Taylor series converges to f (x)
by showing that Rn(x) → 0 as n → ∞ .

23. sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!

24. cos x =
∞∑

k=0

(−1)k x2k

(2k)!

25. ln x =
∞∑

k=1

(−1)k+1 (x − 1)k

k
, 1 ≤ x ≤ 2

26. e−x =
∞∑

k=0

(−1)k xk

k!
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In exercises 27–32, (a) use a Taylor polynomial of degree 4 to
approximate the given number, (b) estimate the error in the
approximation, (c) estimate the number of terms needed in a
Taylor polynomial to guarantee an accuracy of 10−10.

27. ln (1.05) 28. ln (0.9) 29.
√

1.1

30.
√

1.2 31. e0.1 32. e−0.1

In exercises 33–38, use a Taylor series to verify the given formula.

33.
∞∑

k=0

2k

k!
= e2 34.

∞∑
k=0

(−1)k

k!
= e−1

35.
∞∑

k=0

(−1)kπ 2k+1

(2k + 1)!
= 0 36.

∞∑
k=0

(−1)k(π/2)2k+1

(2k + 1)!
= 1

37.
∞∑

k=0

(−1)k

2k + 1
= π

4
38.

∞∑
k=1

(−1)k+1

k
= ln 2

In exercises 39–46, use a known Taylor series to find the Taylor
series about c ��� 0 for the given function and find its radius of
convergence.

39. f (x) = e−2x 40. f (x) = e3x

41. f (x) = xe−x2
42. f (x) = ex − 1

x
43. f (x) = sin x2 44. f (x) = x sin 2x

45. f (x) = cos 3x 46. f (x) = cos x3

47. You may have wondered why it is necessary to show that
lim

n→∞
Rn(x) = 0 to conclude that a Taylor series converges

to f (x). Consider f (x) =
{

e−1/x2
, if x 	= 0

0, if x = 0
. Show that

f ′(0) = f ′′(0) = 0. (Hint: Use the fact that lim
n→0

e−1/n2

nn
= 0 for

any positive integer n.) It turns out that f (n)(0) = 0 for all n.
Thus, the Taylor series of f (x) about c = 0 equals 0, a con-
vergent series which does not converge to f (x).

48. Find the Taylor series expansion of f (x) = |x | with center
x = 1. Argue that the radius of convergence is ∞. However,
show that the Taylor series for f (x) does not converge to f (x)
for all x .

49. The Environmental Protection Agency publishes an overall
fuel economy rating R for each car. It combines the car’s
miles per gallon rating in the city (c) with the car’s miles
per gallon rating on the highway (h) using the formula R =

1

0.55/c + 0.45/h
. Treating h as a constant, find the first three

terms in the Maclaurin series of R(c). If a car’s city rating
improves, discuss the effect on its overall rating.

50. For the fuel rating equation of exercise 49, treat c as a con-
stant and find the first three terms in the Maclaurin series of
R(h). If a car’s highway rating improves, discuss the effect on

its overall rating. Based on your results here and in exercise
49, which rating (c or h) does the EPA consider to be more
important?

51. We have seen that sin 1 = 1 − 1
3! + 1

5! + · · · . Determine how
many terms are needed to approximate sin 1 to within 10−5.
Show that sin 1 = ∫ 1

0 cos x dx . Determine how many terms
are needed for Simpson’s Rule to approximate this integral to
within 10−5. Compare the efficiency of using Maclaurin series
and Simpson’s Rule for this problem.

52. As in exercise 51, compare the efficiency of using Maclaurin
series and Simpson’s Rule in estimating e to within 10−5.

53. Find the Maclaurin series of f (x) = √
a2 + x2 − √

a2 − x2

for some nonzero constant a.

54. In many applications the error function erf(x) =
2√
π

∫ x

0
e−u2

du is important. Compute and graph the fourth

order Taylor polynomial for erf(x) about c = 0.

55. Suppose that a plane is at location f (0) = 10 miles with
velocity f ′(0) = 10 miles/min, acceleration f ′′(0) = 2 miles/
min2 and f ′′′(0) = −1 miles/min3. Predict the location of the
plane at time t = 2 min.

56. Suppose that an astronaut is at (0, 0) and the moon is repre-
sented by a circle of radius 1 centered at (10, 5). The astronaut’s
capsule follows a path y = f (x) with current position f (0) =
0, slope f ′(0) = 1/5, concavity f ′′(0) = −1/10, f ′′′(0) =
1/25, f (4)(0) = 1/25 and f (5)(0) = −1/50. Graph a Taylor
polynomial approximation of f (x). Based on your current in-
formation, do you advise the astronaut to change paths? How
confident are you in the accuracy of your approximation?

57. Find the Taylor series for ex about a general center c.

58. Find the Taylor series for
√

x about a general center c = a2.

Exercises 59–62 involve the binomial expansion.

59. Show that the Maclaurin series for (1 + x)r is

1 +
∞∑

k=1

r (r − 1) · · · (r − k + 1)

k!
xk for any constant r .

60. Simplify the series in exercise 59 for r = 2; r = 3; r is a posi-
tive integer.

61. Use the result of exercise 59 to write out the Maclaurin series
for f (x) = √

1 + x .

62. Use the result of exercise 59 to write out the Maclaurin series
for f (x) = (1 + x)3/2.

63. Find the Maclaurin series of f (x) = cosh x and f (x) = sinh x .
Compare to the Maclaurin series of cos x and sin x .

64. Use the Maclaurin series for tan x and the result of exercise 63
to conjecture the Maclaurin series for tanh x .
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EXPLORATORY EXERCISES

1. Almost all of our series results apply to series of complex num-
bers. Defining i = √−1, show that i2 = −1, i3 = −i, i4 = 1,

and so on. Replacing x with i x in the Maclaurin series for
ex , separate terms containing i from those that don’t contain i

(after the simplifications indicated above) and derive Euler’s
formula: eix = cos x + i sin x .

2. Using the technique of exercise 1, show that cos (i x) = cosh x
and sin (i x) = i sinh x . That is, the trig functions and their hy-
perbolic counterparts are closely related as functions of com-
plex variables.

7.8 APPLICATIONS OF TAYLOR SERIES

In section 7.7, we developed the concept of a Taylor series expansion and gave many
illustrations of how to compute Taylor series expansions. We also gave a few hints as to
how these expansions might be used. In this section, we expand on our earlier presentation,
by giving a few examples of how Taylor series are used in applications. You probably
recognize that the work in the preceding section was challenging. The good news is that
your hard work has significant payoffs, as we illustrate with the following problems. It’s
worth noting that many of the early practitioners of the calculus (including Newton and
Leibniz) worked actively with series.

In this section, we will use series to approximate the values of transcendental functions,
evaluate limits and integrals and define important new functions. As you continue your
studies in mathematics and related fields, you are likely to see far more applications of
Taylor series than we can include here.

You may have wondered how calculators and computers calculate values of transcen-
dental functions, like sin (1.234567). We can now use Taylor series to do so, using only
basic arithmetic operations.

EXAMPLE 8.1 Using Taylor Polynomials to Approximate a Sine Value

Use a Taylor series to compute sin (1.234567) accurate to within 10−11.

Solution It’s not hard to find the Taylor series expansion for f (x) = sin x about x = 0.
(We left this as an exercise in section 7.7.) We have

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · ,

where the interval of convergence is (−∞, ∞). Notice that if we take x = 1.234567, the
series representation of sin 1.234567 is

sin 1.234567 =
∞∑

k=0

(−1)k

(2k + 1)!
(1.234567)2k+1,

which is an alternating series. We can use a partial sum of this series to approximate the
desired value, but just how accurate will a given partial sum be? Recall that for alternating
series, the error in a partial sum is bounded by the absolute value of the first neglected
term. (Note that you could also use the remainder term from Taylor’s Theorem to bound
the error.) To ensure that the error is less than 10−11, we must find an integer k such that
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1.2345672k+1

(2k + 1)!
< 10−11. By trial and error, we find that

1.23456717

17!
≈ 1.010836 × 10−13 < 10−11,

so that k = 8 will do. Observe that this says that the first neglected term corresponds to
k = 8 and so, we compute the partial sum

sin 1.234567 ≈
7∑

k=0

(−1)k

(2k + 1)!
(1.234567)2k+1

= 1.234567 − 1.2345673

3!
+ 1.2345675

5!
− 1.2345677

7!
+ · · · − 1.23456715

15!
≈ 0.94400543137.

Check your calculator or computer to verify that this matches your calculator’s
estimate. �

If you look carefully at example 8.1, you might discover that we were a bit hasty. Cer-
tainly, we answered the question and produced an approximation with the desired accuracy,
but was this the easiest way in which to do this? The answer is no, as we simply grabbed the
most handy Taylor series expansion of f (x) = sin x . You should try to resist the impulse
to automatically use the Taylor series expansion about x = 0 (i.e., the Maclaurin series),
rather than making a more efficient choice. We illustrate this in example 8.2.

EXAMPLE 8.2 Choosing a More Appropriate Taylor Series Expansion

Repeat example 8.1, but this time, make a more appropriate choice of the Taylor series.

Solution Recall from our discussion in section 7.7 that Taylor series converge much
faster close to the point about which you expand, than they do far away. So, if we need
to compute sin 1.234567, is there a handy Taylor series expansion of f (x) = sin x about
some point closer to x = 1.234567? Keeping in mind that we only know the value of sin x
exactly at a few points, you should quickly recognize that a series expanded about x =
π
2 ≈ 1.57 is a better choice than one expanded about x = 0. (Another reasonable choice
is the Taylor series expansion about x = π

3 .) In example 7.5, recall that we had found that

sin x =
∞∑

k=0

(−1)k

(2k)!

(
x − π

2

)2k

= 1 − 1

2

(
x − π

2

)2

+ 1

4!

(
x − π

2

)4

− · · · ,

where the interval of convergence is (−∞, ∞). Taking x = 1.234567, gives us

sin 1.234567 =
∞∑

k=0

(−1)k

(2k)!

(
1.234567 − π

2

)2k

= 1 − 1

2

(
1.234567 − π

2

)2

+ 1

4!

(
1.234567 − π

2

)4

− · · · ,

which is again an alternating series. Using the remainder term from Taylor’s Theorem to
bound the error, we have that

|Rn(1.234567)| =
∣∣∣∣ f (2n+2)(z)

(2n + 2)!

∣∣∣∣
∣∣∣∣1.234567 − π

2

∣∣∣∣2n+2

≤ |1.234567 − π
2 |2n+2

(2n + 2)!
.
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(Note that we might also have chosen to use Theorem 4.2.) By trial and error, you can
find that

|1.234567 − π
2 |2n+2

(2n + 2)!
< 10−11

for n = 4, so that an approximation with the required degree of accuracy is

sin 1.234567 ≈
4∑

k=0

(−1)k

(2k)!

(
1.234567 − π

2

)2k

= 1 − 1

2

(
1.234567 − π

2

)2

+ 1

4!

(
1.234567 − π

2

)4

− 1

6!

(
1.234567 − π

2

)6

+ 1

8!

(
1.234567 − π

2

)8

≈ 0.94400543137.

Compare this result to example 8.1, where we needed to compute many more terms of
the Taylor series to obtain the same degree of accuracy. �

We can also use Taylor series to quickly conjecture the value of a difficult limit.
Be careful, though: the theory of when these conjectures are guaranteed to be correct is
beyond the level of this text. However, we can certainly obtain helpful hints about certain
limits.

EXAMPLE 8.3 Using Taylor Polynomials to Conjecture
the Value of a Limit

Use Taylor series to conjecture lim
x→0

sin (x3) − x3

x9
.

Solution Again recall that the Maclaurin series for sin x is

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − 1

3!
x3 + 1

5!
x5 − 1

7!
x7 + · · · ,

where the interval of convergence is (−∞, ∞). Substituting x3 for x gives us

sin
(
x3

) =
∞∑

k=0

(−1)k

(2k + 1)!
(x3)2k+1 = x3 − x9

3!
+ x15

5!
− · · · .

This gives us

sin
(
x3

) − x3

x9
=

(
x3 − x9

3!
+ x15

5!
− · · ·

)
− x3

x9
= − 1

3!
+ x6

5!
+ · · ·

and so, we conjecture that

lim
x→0

sin
(
x3

) − x3

x9
= − 1

3!
= −1

6
.

You can verify that this limit is correct using l’Hôpital’s Rule (three times, simplifying
each time). �

So, for what else can Taylor series be used? There are many answers to this question, but
this next one is quite useful. Since Taylor polynomials are used to approximate functions on
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a given interval and since there’s nothing easier to integrate than a polynomial, we consider
using a Taylor polynomial approximation to produce an approximation of a definite integral.
It turns out that such an approximation is often better than that obtained from the numerical
methods developed in section 4.9. We illustrate this in example 8.4.

EXAMPLE 8.4 Using Taylor Series to Approximate
a Definite Integral

Use a Taylor polynomial with n = 8 to approximate
∫ 1
−1 cos (x2) dx .

Solution Note that you do not know an antiderivative of cos (x2) and so, have no
choice but to rely on a numerical approximation of the value of the integral. Since you
are integrating on the interval (−1, 1), a Maclaurin series expansion (i.e., a Taylor series
expansion about x = 0) is a good choice. It’s a simple matter to show that

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1 − 1

2
x2 + 1

4!
x4 − 1

6!
x6 + · · · ,

which converges on all of (−∞, ∞). Replacing x by x2 gives us the Taylor series
expansion

cos (x2) =
∞∑

k=0

(−1)k

(2k)!
x4k = 1 − 1

2
x4 + 1

4!
x8 − 1

6!
x12 + · · · ,

so that

cos (x2) ≈ 1 − 1

2
x4 + 1

4!
x8.

This leads us to the approximation∫ 1

−1
cos (x2) dx ≈

∫ 1

−1

(
1 − 1

2
x4 + 1

4!
x8

)
dx

=
(

x − x5

10
+ x9

216

)∣∣∣∣x=1

x=−1

= 977

540
≈ 1.809259.

Our CAS gives us
∫ 1
−1 cos (x2) dx ≈ 1.809048, so our approximation appears to be very

accurate. �

You might reasonably argue that we don’t need Taylor series to obtain approximations
like those in example 8.4, as you could always use other, simpler numerical methods like
Simpson’s Rule to do the job. That’s often true, but just try to use Simpson’s Rule on the
integral in example 8.5.

EXAMPLE 8.5 Using Taylor Series to Approximate
the Value of an Integral

Use a Taylor polynomial with n = 5 to approximate
∫ 1

−1

sin x

x
dx .

Solution Note that you do not know an antiderivative of
sin x

x
. Further, observe that

the integrand is discontinuous at x = 0. However, this does not need to be treated as
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an improper integral, since lim
x→0

sin x

x
= 1. (This says that the integrand has a removable

discontinuity at x = 0.) From the first few terms of the Maclaurin series for f (x) = sin x ,
we have the Taylor polynomial approximation

sin x ≈ x − x3

3!
+ x5

5!
,

so that

sin x

x
≈ 1 − x2

3!
+ x4

5!
.

Notice that since this is a polynomial, it is simple to integrate. Consequently,∫ 1

−1

sin x

x
dx ≈

∫ 1

−1

(
1 − x2

6
+ x4

120

)
dx

=
(

x − x3

18
+ x5

600

)∣∣∣∣x=1

x=−1

=
(

1 − 1

18
+ 1

600

)
−

(
−1 + 1

18
− 1

600

)

= 1703

900
≈ 1.8922.

Our CAS gives us
∫ 1

−1

sin x

x
dx ≈ 1.89216, so our approximation is quite good. On the

other hand, if you try to apply Simpson’s Rule or Trapezoidal Rule, the algorithm will

not work, as they will attempt to evaluate
sin x

x
at x = 0. (Most graphing calculators and

some computer algebra systems also fail to give an answer here, due to the division by zero
at x = 0.) �

While you have now calculated Taylor series expansions of many familiar functions,
many other functions are actually defined by a power series. These include many functions
in the very important class of special functions that frequently arise in physics and engi-
neering applications. These functions cannot be written in terms of elementary functions
(the algebraic, trigonometric, exponential and logarithmic functions with which you are fa-
miliar) and are only known from their series definitions. Among the more important special
functions are the Bessel functions, which are used in the study of fluid motion, acoustics,
wave propagation and other areas of applied mathematics. The Bessel function of order p
is defined by the power series

Jp(x) =
∞∑

k=0

(−1)k x2k+p

22k+pk!(k + p)!
, (8.1)

for nonnegative integers p. You might find it surprising that we define a function by a
power series expansion, but in fact, this is very common. In particular, in the process of
solving differential equations, we often derive the solution as a series. As it turns out, most
of these series solutions are not elementary functions. Specifically, Bessel functions arise
in the solution of the differential equation x2 y′′ + xy′ + (x2 − p2)y = 0. In examples 8.6
and 8.7, we explore several interesting properties of Bessel functions.

EXAMPLE 8.6 The Radius of Convergence of a Bessel Function

Find the radius of convergence for the series defining the Bessel function J0(x).
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Solution From equation (8.1) with p = 0, we have J0(x) =
∞∑

k=0

(−1)k x2k

22k(k!)2
. Observe

that the Ratio Test gives us

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ x2k+2

22k+2[(k + 1)!]2

22k(k!)2

x2k

∣∣∣∣ = lim
k→∞

∣∣∣∣ x2

4(k + 1)2

∣∣∣∣ = 0 < 1,

for all x . The series then converges absolutely for all x and so, the radius of convergence
is ∞. �

In example 8.7, we explore an interesting relationship between the zeros of two Bessel
functions.

EXAMPLE 8.7 The Zeros of Bessel Functions

Verify graphically that on the interval [0, 10], the zeros of J0(x) and J1(x) alternate.

Solution Unless you have a CAS with these Bessel functions available as built-in
functions, you will need to graph partial sums of the defining series:

J0(x) ≈
n∑

k=0

(−1)k x2k

22k(k!)2
and J1(x) ≈

n∑
k=0

(−1)k x2k+1

22k+1k!(k + 1)!
.

Before graphing these, you must first determine how large n should be in order to produce
a reasonable graph. Notice that for each fixed x > 0, both of the defining series are
alternating series. Consequently, the error in using a partial sum to approximate the
function is bounded by the first neglected term. That is,∣∣∣∣∣J0(x) −

n∑
k=0

(−1)k x2k

22k(k!)2

∣∣∣∣∣ ≤ x2n+2

22n+2[(n + 1)!]2

and ∣∣∣∣∣J1(x) −
n∑

k=0

(−1)k x2k+1

22k+1k!(k + 1)!

∣∣∣∣∣ ≤ x2n+3

22n+3(n + 1)!(n + 2)!
,

with the largest error in each occurring at x = 10. Notice that for n = 12, we have that∣∣∣∣∣J0(x) −
12∑

k=0

(−1)k x2k

22k(k!)2

∣∣∣∣∣ ≤ x2(12)+2

22(12)+2[(12 + 1)!]2
≤ 1026

226(13!)2
< 0.04

and∣∣∣∣∣J1(x) −
12∑

k=0

(−1)k x2k+1

22k+1k!(k + 1)!

∣∣∣∣∣ ≤ x2(12)+3

22(12)+3(12 + 1)!(12 + 2)!
≤ 1027

227(13!) (14!)
< 0.04.

Consequently, using a partial sum with n = 12 will result in approximations that are
within 0.04 of the correct value for each x in the interval [0, 10]. This is plenty of
accuracy for our present purposes. Figure 7.43 shows graphs of partial sums with n = 12
for J0(x) and J1(x).

y

x
2 4 6 8 10

�0.5

0.5

1
y � J0(x)

y � J1(x)

FIGURE 7.43
y = J0(x) and y = J1(x).

Notice that J1(0) = 0 and in the figure, you can clearly see that J0(x) = 0 at about
x = 2.4, J1(x) = 0 at about x = 3.9, J0(x) = 0 at about x = 5.6, J1(x) = 0 at about
x = 7.0 and J0(x) = 0 at about x = 8.8. From this, it is now apparent that the zeros of
J0(x) and J1(x) do indeed alternate on the interval [0, 10]. �
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It turns out that the result of example 8.7 generalizes to any interval of positive numbers
and any two Bessel functions of consecutive order. That is, between consecutive zeros of
Jp(x) is a zero of Jp+1(x) and between consecutive zeros of Jp+1(x) is a zero of Jp(x). We
explore this further in the exercises.

EXERCISES 7.8

WRITING EXERCISES

1. In example 8.2, we showed that an expansion about x = π

2 is
more accurate for approximating sin (1.234567) than an ex-
pansion about x = 0 with the same number of terms. Explain
why an expansion about x = 1.2 would be even more efficient,
but is not practical.

2. Assuming that you don’t need to rederive the Maclaurin series
of cos x , compare the amount of work done in example 8.4 to
the work needed to compute a Simpson’s Rule approximation
with n = 16.

3. In equation (8.1), we defined the Bessel functions as series.
This may seem like a convoluted way of defining a func-
tion, but compare the levels of difficulty doing the following
with a Bessel function versus sin x : computing f (0), com-
puting f (1.2), evaluating f (2x), computing f ′(x), computing∫

f (x) dx and computing
∫ 1

0 f (x) dx .

4. Discuss how you might estimate the error in the approximation
of example 8.4.

In exercises 1–6, use an appropriate Taylor series to approxi-
mate the given value, accurate to within 10−11.

1. sin 1.61 2. sin 6.32 3. cos 0.34

4. cos 3.04 5. e−0.2 6. e0.4

In exercises 7–12, use a known Taylor series to conjecture the
value of the limit.

7. lim
x→0

cos x2 − 1

x4
8. lim

x→0

sin x2 − x2

x6

9. lim
x→1

ln x − (x − 1)

(x − 1)2
10. lim

x→0

tan−1 x − x

x3

11. lim
x→0

ex − 1

x
12. lim

x→0

e−2x − 1

x

In exercises 13–18, use a known Taylor polynomial with n
nonzero terms to estimate the value of the integral.

13.
∫ 1

−1

sin x

x
dx, n = 3 14.

∫ √
π

−√
π

cos x2 dx, n = 4

15.
∫ 1

−1
e−x2

dx, n = 5 16.
∫ 1

0
tan−1 x dx, n = 5

17.
∫ 2

1
ln x dx, n = 5 18.

∫ 1

0
e

√
x dx, n = 4

19. Find the radius of convergence of J1(x).

20. Find the radius of convergence of J2(x).

21. Find the number of terms needed to approximate J2(x) within
0.04 for x in the interval [0, 10].

22. Show graphically that the zeros of J1(x) and J2(x) alternate on
the interval (0, 10).

23. Einstein’s theory of relativity states that the mass of an object
traveling at velocity v is m(v) = m0/

√
1 − v2/c2, where m0

is the rest mass of the object and c is the speed of light. Show

that m ≈ m0 +
( m0

2c2

)
v2. Use this approximation to estimate

how large v would need to be to increase the mass by 10%.

24. Find the fourth-degree Taylor polynomial for m(v) in
exercise 23.

25. The weight (force due to gravity) of an object of mass m
and altitude x miles above the surface of the earth is w(x) =

mgR2

(R + x)2
, where R is the radius of the earth and g is the

acceleration due to gravity. Show that w(x) ≈ mg(1 − 2x/R).
Estimate how large x would need to be to reduce the weight
by 10%.

26. Find the second-degree Taylor polynomial for w(x) in exercise
25. Use it to estimate how large x needs to be to reduce the
weight by 10%.

27. Based on your answers to exercises 25 and 26, is weight sig-
nificantly different at a high-altitude location (e.g., 7500 ft)
compared to sea level?

28. The radius of the earth is up to 300 miles larger at the equator
than it is at the poles. Which would have a larger effect on
weight, altitude or latitude?

In exercises 29–32, use the Maclaurin series expansion tanh x ���
x −−− 1

3 x3 ��� 2
15 x15 −−− · · · .

29. The tangential component of the space shuttle’s velocity during

re-entry is approximately v(t) = vc tanh

(
g

vc
t + tanh−1 v0

vc

)
,
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where v0 is the velocity at time 0 and vc is the terminal
velocity (see Long and Weiss, The American Mathematical

Monthly, February, 1999). If tanh−1 v0

vc
= 1

2
, show that v(t) ≈

gt + 1

2
vc. Is this estimate of v(t) too large or too small?

30. Show that in exercise 29, v(t) → vc as t → ∞. Use the ap-
proximation in exercise 29 to estimate the time needed to reach
90% of the terminal velocity.

31. The downward velocity of a skydiver of mass m is v(t) =√
40mg tanh

(√
g

40m
t

)
. Show that v(t) ≈ gt − g2

120m
t3.

32. The velocity of a water wave of length L in water of depth h

satisfies the equation v2 = gL

2π
tanh

2πh

L
. Show that v ≈ √

gh.

33. The power of a reflecting telescope is proportional to
the surface area S of the parabolic reflector, where S =
8π

3
c2

[(
d2

16c2
+ 1

)3/2

− 1

]
. Here, d is the diameter of the

parabolic reflector, which has depth k with c = d2

4k
. Expand

the term

(
d2

16c2
+ 1

)3/2

and show that if
d2

16c2
is small, then

S ≈ πd2

4
.

34. The energy density of electromagnetic radiation at wave-
length λ from a blackbody at temperature T degrees
(Kelvin) is given by Planck’s law of blackbody radiation:

f (λ) = 8πhc

λ5(ehc/λkT − 1)
, where h is Planck’s constant, c is

the speed of light and k is Boltzmann’s constant. To find the
wavelength of peak emission, maximize f (λ) by minimizing
g(λ) = λ5(ehc/λkT − 1). Use the Maclaurin series for ex to
expand the expression in parentheses and find λ to minimize

the resulting function. (Hint: Use hc
k ≈ 0.014.) Compare this

to Wien’s law: λmax = 0.002898

T
. Wien’s law is accurate for

small λ. Discuss the flaw in our use of Maclaurin series.

35. Use the Maclaurin series for ex to expand the denominator in

Planck’s law of exercise 34 and show that f (λ) ≈ 8πkt

λ4
. State

whether this approximation is better for small or large wave-
lengths λ. This is known in physics as the Rayleigh-Jeans law.

36. A disk of radius a has a charge of constant density σ . Point
P lies at a distance r directly above the disk. The electrical
potential at point P is given by V = 2πσ (

√
r 2 + a2 − r ).

Show that for large r, V ≈ πa2σ

r
.

EXPLORATORY EXERCISES

1. The Bessel functions and Legendre polynomials are examples
of the so-called special functions. For nonnegative integers n,
the Legendre polynomials are defined by

Pn(x) = 2−n
[n/2]∑
k=0

(−1)k(2n − 2k)!

(n − k)!k!(n − 2k)!
xn−2k .

Here, [n/2] is the greatest integer less than or equal to n/2
(for example, [1/2] = 0 and [2/2] = 1). Show that P0(x) = 1,
P1(x) = x and P2(x) = 3

2 x2 − 1
2 . Show that for these three

functions, ∫ 1

−1
Pm(x)Pn(x) dx = 0, for m 	= n.

This fact, which is true for all Legendre polynomials, is called
the orthogonality condition. Orthogonal functions are com-
monly used to provide simple representations of complicated
functions.

7.9 FOURIER SERIES

Over the last several sections, we have seen how we can represent a function by a power
series (i.e., a Taylor series). This is an extraordinary development, in particular because
we can use the partial sums of such a series expansion (i.e., the Taylor polynomials) to
compute approximate values of the function for values of x close to the point c about which
you expanded. For the first time, this gave us the means of calculating approximate values
of transcendental functions like ex , ln x and sin x , which we otherwise could not compute.
Although this is a good reason for studying series expansions of functions, it is not the only
reason we need them.

Observe that many phenomena we encounter in the world around us are periodic in
nature. That is, they repeat themselves over and over again. For instance, light, sound,
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radio waves and x-rays (to mention only a few) are all periodic. For such phenomena,
Taylor polynomial approximations have some obvious shortcomings. Look back at any of
the graphs you (or we) constructed of the Taylor polynomials of a periodic function and
you’ll notice that as x gets farther away from c (the point about which you expanded), the
difference between the function and a given Taylor polynomial grows. Such behavior, as
we illustrate in Figure 7.44a for the case of f (x) = sin x expanded about x = π

2 , is typical
of the convergence of Taylor series.

Because the Taylor polynomials provide an accurate approximation only in the vicinity
of c, we say that they are accurate locally. In general, no matter how large you make n, the
approximation is still only valid locally. In many situations, notably in communications,
we need to find an approximation to a given periodic function that is valid globally (i.e., for
all x). Consider the Taylor polynomial graphed in Figure 7.44b and convince yourself that
Taylor polynomials will not satisfy this need. For this reason, we construct a different type
of series expansion for periodic functions, one where each of the terms in the expansion is
periodic.

�1

1

q�q wp

y � sin x

y � P4(x)

y

x

y

�1

1

q w r t

y � sin x

y � P8(x)

�q�w�r
x

FIGURE 7.44a
y = sin x and y = P4(x).

FIGURE 7.44b
y = sin x and y = P8(x).

Recall that we say that a function f is periodic of period T > 0 if f (x + T ) = f (x),
for all x in the domain of f . Can you think of any periodic functions? Surely, sin x and
cos x come to mind. These are both periodic of period 2π . Further, sin (2x), cos (2x),
sin (3x), cos (3x) and so on are all periodic of period 2π . In fact, the simplest periodic
functions you can think of (aside from constant functions) are the functions

sin (kx) and cos (kx), for k = 1, 2, 3, . . . .

Note that each of these is periodic of period 2π , as follows. For any integer k, let f (x) =
sin (kx). We then have

f (x + 2π ) = sin[k(x + 2π )] = sin (kx + 2kπ ) = sin (kx) = f (x).

Likewise, you can show that cos (kx) has period 2π .
So, if you wanted to expand a periodic function in a series, the simplest periodic

functions to use in the terms of the series are just these functions. Consequently, we consider
a series of the form

a0

2
+

∞∑
k=1

[ak cos (kx) + bk sin (kx)],Fourier series
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called a Fourier series. Notice that if the series converges, it will converge to a periodic
function whose period is 2π , since every term in the series has period 2π . The coefficients
of the series, a0, a1, a2, . . . and b1, b2, . . . are called the Fourier coefficients. You may

have noticed the unusual way in which we wrote the leading term of the series
(a0

2

)
. We

did this in order to simplify the formulas for computing these coefficients, as we’ll see
later.

There are a number of important questions we must address.

� What functions can be expanded in a Fourier series?
� How do we compute the Fourier coefficients?
� Does the Fourier series converge? If so, to what function does the series converge?

We begin our investigation much as we did with power series. Suppose that a given
Fourier series converges on the interval [−π, π]. It then represents a function f on that
interval,

f (x) = a0

2
+

∞∑
k=1

[ak cos (kx) + bk sin (kx)], (9.1)

where f must be periodic outside of [−π, π]. Although some of the details of the proof are
beyond the level of this course, we want to give you some idea of how the Fourier coeffi-
cients are computed. If we integrate both sides of equation (9.1) with respect to x on the
interval [−π, π], we get

∫ π

−π

f (x) dx =
∫ π

−π

a0

2
dx +

∫ π

−π

∞∑
k=1

[ak cos (kx) + bk sin (kx)] dx

=
∫ π

−π

a0

2
dx +

∞∑
k=1

[
ak

∫ π

−π

cos (kx) dx + bk

∫ π

−π

sin (kx) dx

]
, (9.2)

assuming we can interchange the order of integration and summation. In general, the order
may not be interchanged (this is beyond the level of this course), but for many Fourier
series, doing so is permissible. Observe that for every k = 1, 2, 3, . . . , we have∫ π

−π

cos (kx) dx = 1

k
sin (kx)

∣∣∣∣π
−π

= 1

k
[sin (kπ ) − sin (−kπ )] = 0

HISTORICAL NOTES
Jean Baptiste Joseph Fourier
(1768–1830) French
mathematician who invented
Fourier series. Fourier was
heavily involved in French
politics, becoming a member of
the Revolutionary Committee,
serving as scientific advisor to
Napoleon and establishing
educational facilities in Egypt.
Fourier held numerous offices,
including secretary of the Cairo
Institute and Prefect of Grenoble.
Fourier introduced his
trigonometric series as an
essential technique for developing
his highly original and
revolutionary theory of heat.

and ∫ π

−π

sin (kx) dx = −1

k
cos (kx)

∣∣∣∣π
−π

= −1

k
[cos (kπ ) − cos (−kπ )] = 0.

This reduces equation (9.2) to simply∫ π

−π

f (x) dx =
∫ π

−π

a0

2
dx = a0π.

Solving this for a0, we have

a0 = 1

π

∫ π

−π

f (x) dx . (9.3)
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If we multiply both sides of equation (9.1) by cos (nx) (where n is an integer, n ≥ 1),
and then integrate with respect to x on the interval [−π, π], observe that we get∫ π

−π

f (x) cos (nx) dx

=
∫ π

−π

a0

2
cos (nx) dx

+
∫ π

−π

∞∑
k=1

[ak cos (kx) cos (nx) + bk sin (kx) cos (nx)] dx

= a0

2

∫ π

−π

cos (nx) dx

+
∞∑

k=1

[
ak

∫ π

−π

cos (kx) cos (nx) dx + bk

∫ π

−π

sin (kx) cos (nx) dx

]
, (9.4)

again assuming we can interchange the order of integration and summation. Next, recall
that ∫ π

−π

cos (nx) dx = 0, for all n = 1, 2, . . . .

It’s an easy exercise to show that∫ π

−π

sin (kx) cos (nx) dx = 0, for all n = 1, 2, . . . and for all k = 1, 2, . . .

and that ∫ π

−π

cos (kx) cos (nx) dx =
{

0, if n 	= k
π, if n = k

.

Notice that this says that every term in the series in equation (9.4) except one (the term
corresponding to k = n) is zero and equation (9.4) reduces to simply∫ π

−π

f (x) cos (nx) dx = anπ.

This gives us (after substituting k for n)

ak = 1

π

∫ π

−π

f (x) cos (kx) dx, for k = 1, 2, 3, . . . . (9.5)Fourier coefficients

Likewise, multiplying both sides of equation (9.1) by sin (nx) and integrating from −π to
π gives us

bk = 1

π

∫ π

−π

f (x) sin (kx) dx, for k = 1, 2, 3, . . . . (9.6)

Equations (9.3), (9.5) and (9.6) are called the Euler-Fourier formulas. Notice that equation
(9.3) is the same as (9.5) with k = 0. (This was the reason we chose the leading term of the

series to be
a0

2
, instead of simply a0.)

Let’s summarize what we’ve done so far. We observed that if a Fourier series converges
on some interval, then it converges to a function f where the Fourier coefficients satisfy
the Euler-Fourier formulas (9.3), (9.5) and (9.6).

Just as we did with power series, given any integrable function f , we can compute the
coefficients in (9.3), (9.5) and (9.6) and write down a Fourier series. But, will the series
converge and if it does, to what function will it converge? We’ll answer these questions
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shortly. For the moment, let’s try to compute the terms of a Fourier series and see what we
can observe.

EXAMPLE 9.1 Finding a Fourier Series Expansion

Find the Fourier series corresponding to the square-wave function

f (x) =
{

0, if −π < x ≤ 0
1, if 0 < x ≤ π

,

where f is assumed to be periodic outside of the interval [−π, π] (see the graph in
Figure 7.45).

y

x

1

0.5

  �2p �p p 2p

FIGURE 7.45
Square-wave function.

Solution Notice that even though a0 satisfies the same formula as ak , for k ≥ 1, we
must always compute a0 separately from the rest of the ak’s. From equation (9.3), we get

a0 = 1

π

∫ π

−π

f (x) dx = 1

π

∫ 0

−π

0 dx + 1

π

∫ π

0
1 dx = 0 + π

π
= 1.

From (9.5), we also have that for k ≥ 1,

ak = 1

π

∫ π

−π

f (x) cos (kx) dx = 1

π

∫ 0

−π

(0) cos (kx) dx + 1

π

∫ π

0
1 cos (kx) dx

= 1

πk
sin (kx)

∣∣∣∣π
0

= 1

πk
[sin (kπ ) − sin (0)] = 0.

Finally, from (9.6), we have

bk = 1

π

∫ π

−π

f (x) sin (kx) dx = 1

π

∫ 0

−π

(0) sin (kx) dx + 1

π

∫ π

0
(1) sin (kx) dx

= − 1

πk
cos (kx)

∣∣∣∣π
0

= − 1

πk
[cos (kπ ) − cos (0)] = − 1

πk
[(−1)k − 1]

=



0, if k is even
2

πk
, if k is odd

.

Notice that we can write the even- and odd-indexed coefficients separately as b2k = 0, for

k = 1, 2, . . . and b2k−1 = 2

(2k − 1)π
, for k = 1, 2, . . . . We then have the Fourier series

a0

2
+

∞∑
k=1

[ak cos (kx) + bk sin (kx)] = 1

2
+

∞∑
k=1

bk sin (kx) = 1

2
+

∞∑
k=1

b2k−1 sin (2k − 1)x

= 1

2
+

∞∑
k=1

2

(2k − 1)π
sin[(2k − 1)x]

= 1

2
+ 2

π
sin x + 2

3π
sin (3x) + 2

5π
sin (5x) + · · · .

Notice that none of our existing convergence tests are appropriate for Fourier series.
Since we can’t test this, we consider the graphs of the first few partial sums of the series
defined by

Fn(x) = 1

2
+

n∑
k=1

2

(2k − 1)π
sin[(2k − 1)x].
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In Figures 7.46a–d, we graph a number of these partial sums.
y

x

1

0.5

p�p 2p�2p

y

x

1

0.5

p�p 2p�2p

FIGURE 7.46a
y = F4(x) and y = f (x).

FIGURE 7.46b
y = F8(x) and y = f (x).

y

x

1

0.5

p�p 2p�2p

y

x

1

0.5

p�p 2p�2p

FIGURE 7.46c
y = F20(x) and y = f (x).

FIGURE 7.46d
y = F50(x) and y = f (x).

Notice that as n gets larger and larger, the graph of Fn(x) appears to be approaching the
graph of the square-wave function f (x) shown in red and seen in Figure 7.45. Based
on this, we might conjecture that the Fourier series converges to the function f (x). As
it turns out, this is not quite correct. We’ll soon see that the series converges to f (x),
everywhere, except at points of discontinuity. �

Next, we give an example of constructing a Fourier series for another common
waveform.

EXAMPLE 9.2 A Fourier Series Expansion
for the Triangular Wave Function

Find the Fourier series expansion of f (x) = |x |, for −π ≤ x ≤ π , where f is assumed
to be periodic outside of the interval [−π, π], of period 2π .

Solution In this case, f is the triangular wave function graphed in Figure 7.47. From
the Euler-Fourier formulas, we have

a0 = 1

π

∫ π

−π

|x | dx = 1

π

∫ 0

−π

−x dx + 1

π

∫ π

0
x dx

= − 1

π

x2

2

∣∣∣∣0

−π

+ 1

π

x2

2

∣∣∣∣π
0

= π

2
+ π

2
= π.

Similarly, for each k ≥ 1, we get

ak = 1

π

∫ π

−π

|x | cos (kx) dx = 1

π

∫ 0

−π

(−x) cos (kx) dx + 1

π

∫ π

0
x cos (kx) dx .
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y

3

2

p 2p�p�2p�3p�4p 3p 4p
x

FIGURE 7.47
Triangular wave.

Both integrals require the same integration by parts. We let

u = x dv = cos (kx) dx

du = dx v = 1

k
sin (kx)

so that

ak = − 1

π

∫ 0

−π

x cos (kx) dx + 1

π

∫ π

0
x cos (kx) dx

= − 1

π

[
x

k
sin (kx)

]0

−π

+ 1

πk

∫ 0

−π

sin (kx) dx + 1

π

[
x

k
sin (kx)

]π

0

− 1

πk

∫ π

0
sin (kx) dx

= − 1

π

[
0 + π

k
sin (−πk)

]
− 1

πk2
cos (kx)

∣∣∣∣0

−π

+ 1

π

[
π

k
sin (πk) − 0

]
+ 1

πk2
cos (kx)

∣∣∣∣π
0

= 0 − 1

πk2
[cos 0 − cos (−kπ )] + 0 + 1

πk2
[cos (kπ ) − cos 0]

Since sin πk = 0

and sin (−πk) = 0.

= 2

πk2
[cos (kπ ) − 1] =




0, if k is even

−4

πk2
, if k is odd

.
Since cos (kπ ) = 1, when k is even and

cos (kπ ) = −1, when k is odd.

Writing the even- and odd-indexed coefficients separately, we have a2k = 0, for k =
1, 2, . . . and a2k−1 = −4

π (2k − 1)2 , for k = 1, 2, . . . . We leave it as an exercise to show that

bk = 0, for all k.

This gives us the Fourier series

a0

2
+

∞∑
k=1

[ak cos (kx) + bk sin (kx)] = π

2
+

∞∑
k=1

ak cos (kx) = π

2
+

∞∑
k=1

a2k−1 cos (2k − 1)x

= π

2
−

∞∑
k=1

4

π (2k − 1)2 cos (2k − 1)x

= π

2
− 4

π
cos x − 4

9π
cos (3x) − 4

25π
cos (5x) − · · · .
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You can show that this series converges absolutely for all x , by using the Comparison
Test, since

|ak | =
∣∣∣∣ 4

π (2k − 1)2 cos (2k − 1)x

∣∣∣∣ ≤ 4

π (2k − 1)2

and the series
∞∑

k=1

4

π (2k − 1)2 converges. (Hint: Compare this last series to the convergent

p-series
∞∑

k=1

1

k2
, using the Limit Comparison Test.) To get an idea of the function to which

the series is converging, we plot several of the partial sums of the series,

Fn(x) = π

2
−

n∑
k=1

4

π (2k − 1)2 cos (2k − 1)x .

See if you can conjecture the sum of the series by looking at Figures 7.48a and b. Notice
how quickly the partial sums of the series appear to converge to the triangular wave
function f (shown in red; also see Figure 7.47). As it turns out, the graph of the partial
sums will not change appreciably if you plot Fn(x) for much larger values of n. (Try this!)
We’ll see later how to be sure that the Fourier series converges to f (x) for all x . There’s
something further to note here: the accuracy of the approximation is fairly uniform. That
is, the difference between a given partial sum and f is roughly the same for each x . Take
care to distinguish this behavior from that of Taylor polynomial approximations, where
the farther you get away from the point about which you’ve expanded, the worse the
approximation tends to get.

y

3

2

p 2p�p�2p�3p�4p 3p 4p
x

y

3

2

p 2p�p�2p�3p�4p 3p 4p
x

FIGURE 7.48a
y = F1(x) and y = f (x).

FIGURE 7.48b
y = F4(x) and y = f (x).

�

Functions of Period Other Than 2π
Now, suppose you have a function f that is periodic of period T , but T 	= 2π . In this case,
we want to expand f in a series of simple functions of period T . First, define l = T

2 and
notice that

cos

(
kπx

l

)
and sin

(
kπx

l

)
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are periodic of period T = 2l, for each k = 1, 2, . . . [Hint: To prove this, let f (x) = cos
(

kπx
l

)
and show that f (x + 2l) = f (x), for all x and for each k = 1, 2, . . . . Likewise, for g(x) =
sin

(
kπx

l

)
, show that g(x + 2l) = g(x) for all x and for k = 1, 2, . . . .] The Fourier series

expansion of f of period 2l is then

a0

2
+

∞∑
k=1

[
ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

)]
.

We leave it as an exercise to show that the Fourier coefficients in this case are given by the
Euler-Fourier formulas:

ak = 1

l

∫ l

−l
f (x) cos

(
kπx

l

)
dx, for k = 0, 1, 2, . . . (9.7)

and

bk = 1

l

∫ l

−l
f (x) sin

(
kπx

l

)
dx, for k = 1, 2, 3, . . . . (9.8)

Notice that (9.3), (9.5) and (9.6) are equivalent to (9.7) and (9.8) with l = π .

EXAMPLE 9.3 A Fourier Series Expansion for a Square
Wave Function

Find a Fourier series expansion for the function

f (x) =
{−2, if −1 < x ≤ 0

2, if 0 < x ≤ 1
,

where f is defined so that it is periodic of period 2 outside of the interval [−1, 1].

Solution The graph of f is the square-wave seen in Figure 7.49. From the Euler- Fourier
formulas (9.7) and (9.8) with l = 1, we have

a0 = 1

1

∫ 1

−1
f (x) dx =

∫ 0

−1
(−2) dx +

∫ 1

0
2 dx = 0.

Likewise, we get

ak = 1

1

∫ 1

−1
f (x) cos

(
kπx

1

)
dx = 0, for k = 1, 2, 3, . . . .

(This is left as an exercise.)

y

x
1 2 3�1�2�3

�2

�1

1

2

FIGURE 7.49
Square wave.
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Finally, we have

bk = 1

1

∫ 1

−1
f (x) sin

(
kπx

1

)
dx =

∫ 0

−1
(−2) sin (kπx) dx +

∫ 1

0
2 sin (kπx) dx

= 2

kπ
cos (kπx)

∣∣∣∣0

−1

− 2

kπ
cos (kπx)

∣∣∣∣1

0

= 4

kπ
[cos 0 − cos (kπ )]

= 4

kπ
[1 − cos (kπ )] =




0, if k is even
8

kπ
, if k is odd

.
Since cos (kπ ) = 1, when k is even

and cos (kπ ) = −1, when k is odd.

This gives us the Fourier series

a0

2
+

∞∑
k=1

[ak cos (kπx) + bk sin (kπx)] =
∞∑

k=1

bk sin (kπx) =
∞∑

k=1

b2k−1 sin[(2k − 1)πx]

=
∞∑

k=1

8

(2k − 1)π
sin[(2k − 1)πx].

Since b2k = 0 and b2k−1 = 8

(2k − 1)π
.

Although we as yet have no tools for determining the convergence or divergence of this
series, we graph a few of the partial sums of the series,

Fn(x) =
n∑

k=1

8

(2k − 1)π
sin[(2k − 1)πx]

in Figures 7.50a–d. From the graphs, it appears that the series is converging to the square
wave function f , except at the points of discontinuity, x = 0, ±1, ±2, ±3, . . . . At those

y

x
1 2 3�1�2�3

�2

�1

1

2
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2

FIGURE 7.50a
y = F4(x) and y = f (x).

FIGURE 7.50b
y = F8(x) and y = f (x).
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FIGURE 7.50c
y = F20(x) and y = f (x).

FIGURE 7.50d
y = F50(x) and y = f (x).
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points, the series appears to converge to 0. You can easily verify this by observing that
the terms of the series are

8

(2k − 1)π
sin[(2k − 1)πx] = 0, for integer values of x .

Since each term in the series is zero, the series converges to 0 at all integer values of x .
You might think of this as follows: at the points where f is discontinuous, the series is
converging to the average of the two function values on either side of the discontinuity.
As we will see, this is typical of the convergence of Fourier series. �

We now state the major result on the convergence of Fourier series in Theorem 9.1.

THEOREM 9.1 (Fourier Convergence Theorem)

Suppose that f is periodic of period 2l and that f and f ′ are continuous on the
interval [−l, l], except for at most a finite number of jump discontinuities. Then, f
has a convergent Fourier series expansion. Further, the series converges to f (x), when
f is continuous at x and to

1

2

[
lim

t→x+
f (t) + lim

t→x−
f (t)

]
at any points x where f has a jump discontinuity.

PROOF

The proof of the theorem is beyond the level of this text and can be found in texts on
advanced calculus or Fourier analysis.

REMARK 9.1

The Fourier Convergence
Theorem says that a Fourier series
may converge to a discontinuous
function, even though every term
in the series is continuous (and
differentiable) for all x .

EXAMPLE 9.4 Proving Convergence of a Fourier Series

Use the Fourier Convergence Theorem to prove that the Fourier series expansion of
period 2π ,

π

2
−

∞∑
k=1

4

(2k − 1)2π
cos (2k − 1)x,

derived in example 9.2, for f (x) = |x |, for −π ≤ x ≤ π and periodic outside of [−π, π],
converges to f (x) everywhere.

Solution First, note that f is continuous everywhere (see Figure 7.47). We also have
that since

f (x) = |x | =
{−x, if −π ≤ x < 0

x, if 0 ≤ x < π

and is periodic outside [−π, π], then

f ′(x) =
{−1, −π < x < 0

1, 0 < x < π
.

So, f ′ is also continuous on [−π, π], except for jump discontinuities at x = 0 and
x = ±π . From the Fourier Convergence Theorem, we now have that the Fourier series
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converges to f everywhere (since f is continuous everywhere). Because of this, we can
write

f (x) = π

2
−

∞∑
k=1

4

(2k − 1)2π
cos (2k − 1)x,

for all x . �

As you can see from the Fourier Convergence Theorem, Fourier series do not always
converge to the function you are expanding.

EXAMPLE 9.5 Investigating Convergence of a Fourier Series

Use the Fourier Convergence Theorem to investigate the convergence of the Fourier series
∞∑

k=1

8

(2k − 1)π
sin[(2k − 1)πx],

derived as an expansion of the square-wave function

f (x) =
{−2, if −1 < x ≤ 0

2, if 0 < x ≤ 1
,

where f is taken to be periodic outside of [−1, 1] (see example 9.3).

Solution First, note that f is continuous, except for jump discontinuities at x = 0, ±1,

±2, . . . . Further,

f ′(x) =
{

0, if −1 < x < 0
0, if 0 < x < 1

and is periodic outside of [−1, 1]. Thus, f ′ is also continuous everywhere, except for
jump discontinuities at integer values of x . From the Fourier Convergence Theorem,
the Fourier series will converge to f (x) everywhere, except at the discontinuities, x =
0, ±1, ±2, . . . , where the series converges to the average of the one-sided limits, that is,
0. (Why 0?) Since the series does not converge to f everywhere, we cannot say that the
function and the series are equal. In this case, we usually write

f (x) ∼
∞∑

k=1

8

(2k − 1)π
sin[(2k − 1)πx],

to indicate that the series corresponds to f (but is not necessarily equal to f ). In the
case of Fourier series, this says that the series converges to f (x) at every x where f
is continuous and to the average of the one-sided limits at any jump discontinuities.
Notice that this is the behavior seen in the graphs of the partial sums of the series seen in
Figures 7.50a–d. �

Fourier Series and Music Synthesizers
You may be wondering why we have taken the trouble to investigate Fourier series. There
must be some significant payoff for all of this work. Most people find it surprising that
series of sines and cosines can converge to form line segments, parabolas and other shapes
on finite intervals. As interesting as this is, this is not why we have pursued this study. As
it turns out, Fourier series are widely used in engineering, physics, chemistry and so on.
We give you a sense of how Fourier series are used with the following brief discussion of
music synthesizers and through a variety of exercises.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

PB480-07 PB480-Smith-v14.cls August 25, 2004 20:4

SECTION 7.9 Fourier Series 667

Suppose that you had a music machine that could generate pure tones at various pitches
and volumes. What types of sounds could you synthesize by combining several pure tones
together? To answer this question, we first translate the problem into mathematics. A pure
tone can be modeled by A sin ωt , where the amplitude A determines the volume and the
frequency ω determines the pitch. For example, to mimic a saxophone, you must match
the characteristic waveform of a saxophone (see Figure 7.51). The shape of the waveform
affects the timbre of the tone, a quality most humans readily discern (a saxophone sounds
different than a trumpet, doesn’t it?).

FIGURE 7.51
Saxophone waveform.

Consider the following music synthesizer problem. Given a waveform such as the one
shown in Figure 7.51, can you add together several pure tones of the form A sin ωt to approx-
imate the waveform? Note that if the pure tones are of the form b1 sin t, b2 sin 2t, b3 sin 3t
and so on, this is essentially a Fourier series problem. That is, we want to approximate a
given wave function f (t) by a sum of these pure tones, as follows:

f (t) ≈ b1 sin t + b2 sin 2t + b3 sin 3t + · · · + bn sin nt.

Although the cosine terms are all missing, notice that this is the partial sum of a Fourier
series. (Such series are called Fourier sine series and are explored in the exercises.) For
music synthesizers, the Fourier coefficients are simply the amplitudes of the various har-
monics in a given waveform. In this context, you can think of the bass and treble knobs
on a stereo as manipulating the amplitudes of different terms in a Fourier series. Crank-
ing up the bass emphasizes low frequency terms (i.e., increases the coefficients of the
first few terms of the Fourier series), while turning up the treble emphasizes the high fre-
quency terms. An equalizer (see Figure 7.52) gives you more direct control of individual
frequencies.

FIGURE 7.52
A graphic equalizer.

In general, the idea of analyzing a wave phenomenon by breaking the wave down into
its component frequencies is essential to much of modern science and engineering. This
type of spectral analysis is used in numerous scientific disciplines.

EXERCISES 7.9

WRITING EXERCISES

1. Explain why the Fourier series of f (x) = 1 + 3 cos x − sin 2x
on the interval [−π, π ] is simply 1 + 3 cos x − sin 2x . (Hint:
Explain what the goal of a Fourier series representation is and
note that in this case no work needs to be done.) Would this
change if the interval were [−1, 1] instead?

2. Polynomials are built up from the basic operations of arith-
metic. We often use Taylor series to rewrite an awkward func-
tion (e.g., sin x) into arithmetic form. Many natural phenomena
are waves, which are well modeled by sines and cosines. Dis-
cuss the extent to which the following statement is true: Fourier
series allow us to rewrite algebraic functions (e.g., x2) into a
natural (wave) form.

3. Theorem 9.1 states that a Fourier series may converge to a
function with jump discontinuities. In examples 9.1 and 9.3,
identify the locations of the jump discontinuities and the values
to which the Fourier series converges at these points. In what
way are these values reasonable compromises?

4. Carefully examine Figures 7.46 and 7.50. For which x’s does
the Fourier series seem to converge rapidly? slowly? Note that
for every n the partial sum Fn(x) passes exactly through the
limiting point for jump discontinuities. Describe the behav-
ior of the partial sums near the jump discontinuities. This
overshoot/undershoot behavior is referred to as the Gibbs phe-
nomenon (see exercises 49 and 53).

In exercises 1–8, find the Fourier series of the function on the
interval [−−−π,π]. Graph the function and the partial sums F4(x)
and F8(x) on the interval [−−−2π, 2π].

1. f (x) = x 2. f (x) = x2

3. f (x) = 2|x | 4. f (x) = 3x

5. f (x) =
{

1, if −π < x < 0
−1, if 0 < x < π
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6. f (x) =
{

1, if −π < x < 0
0, if 0 < x < π

7. f (x) = 3 sin 2x 8. f (x) = 2 sin 3x

In exercises 9–14, find the Fourier series of the function on the
given interval.

9. f (x) = −x, [−1, 1] 10. f (x) = |x |, [−1, 1]

11. f (x) = x2, [−1, 1] 12. f (x) = 3x, [−2, 2]

13. f (x) =
{

0, if −1 < x < 0
x, if 0 < x < 1

14. f (x) =
{

0, if −1 < x < 0
1 − x, if 0 < x < 1

In exercises 15–20, do not compute the Fourier series, but graph
the function to which the Fourier series converges, showing at
least three full periods of the limit function.

15. f (x) = x, [−2, 2] 16. f (x) = x2, [−3, 3]

17. f (x) =
{−x, if −1 < x < 0

0, if 0 < x < 1

18. f (x) =
{

1, if −2 < x < 0
3, if 0 < x < 2

19. f (x) =



−1, if −2 < x < −1
0, if −1 < x < 1
1, if 1 < x < 2

20. f (x) =



2, if −2 < x < −1
−2, if −1 < x < 1
0, if 1 < x < 2

In exercises 21–24, use the Fourier Convergence Theorem to
investigate the convergence of the Fourier series in the given
exercise.

21. exercise 1 22. exercise 3

23. exercise 5 24. exercise 13

25. Substitute x = 1 into the Fourier series formula of exercise 11

to prove that
∞∑

k=1

1

k2
= π 2

6
.

26. Use the Fourier series of example 9.1 to prove that
∞∑

k=1

sin (2k − 1)

(2k − 1)
= π

4
.

27. Use the Fourier series of example 9.2 to prove that
∞∑

k=1

1

(2k − 1)2
= π 2

8
.

28. Combine the results of exercises 25 and 27 to find
∞∑

k=1

1

(2k)2
.

Exercises 29–34 involve even and odd functions.

29. You have undoubtedly noticed that many Fourier series consist
of only cosine or only sine terms. This can be easily understood

in terms of even and odd functions. A function f (x) is even if
f (−x) = f (x) for all x . A function is odd if f (−x) = − f (x)
for all x . Show that cos x is even, sin x is odd and cos x + sin x
is neither.

30. If f (x) is even, show that g(x) = f (x) cos x is even and
h(x) = f (x) sin x is odd.

31. If f (x) is odd, show that g(x) = f (x) cos x is odd and h(x) =
f (x) sin x is even.

32. If f and g are even, what can you say about f g?

33. If f is even and g is odd, what can you say about f g?

34. If f and g are odd, what can you say about f g?

35. Prove the general Euler-Fourier formulas (9.7) and (9.8).

36. If g(x) is an odd function (see exercise 29), show that∫ l
−l g(x) dx = 0 for any (positive) constant l. (Hint: Compare∫ 0
−l g(x) dx and

∫ l
0 g(x) dx . You will need to make the change

of variable: t = −x in one of the integrals.) Using the results
of exercise 30, show that if f (x) is even, then bk = 0 for all k
and the Fourier series of f (x) consists only of a constant and
cosine terms. If f (x) is odd, show that ak = 0 for all k and the
Fourier series of f (x) consists only of sine terms.

In exercises 37–42, use the even/odd properties of f (x) to pre-
dict (don’t compute) whether the Fourier series will contain only
cosine terms, only sine terms or both.

37. f (x) = x3 38. f (x) = x4

39. f (x) = ex 40. f (x) = |x |

41. f (x) =
{

0, if −1 < x < 0
x, if 0 < x < 1

42. f (x) =
{−1, if −2 < x < 0

3, if 0 < x < 2

43. The function f (x) =
{−1, if −2 < x < 0

3, if 0 < x < 2
is neither even

nor odd, but can be written as f (x) = g(x) + 1 where g(x) ={−2, if −2 < x < 0
2, if 0 < x < 2

. Explain why the Fourier series of f (x)

will contain sine terms and the constant 1, but no cosine terms.

44. Suppose that you want to find the Fourier series of f (x) =
x + x2. Explain why to find bk you would only need to inte-
grate x sin

(
kπx

l

)
and to find ak you would only need to integrate

x2 cos
(

kπx
l

)
.

Exercises 45–48 are adapted from the owner’s manual of a high-
end music synthesizer.

45. A fundamental choice to be made when generating a new tone
on a music synthesizer is the waveform. The options are saw-
tooth, square and pulse. You worked with the sawtooth wave
in exercise 9. Graph the limiting function for the function in
exercise 9 on the interval [−4, 4]. Explain why “sawtooth”
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is a good name. A square wave is shown in Figure 7.49.
A pulse wave of period 2 with width 1/n is generated by

f (x) =
{−2, if 1/n < |x | < 1

2, if |x | ≤ 1/n
. Graph pulse waves of width

1/3 and 1/4 on the interval [−4, 4].

46. The harmonic content of a wave equals the ratio of in-
tegral harmonic waves to the fundamental wave. To under-
stand what this means, write the Fourier series of exercise 9
as 2

π

(
sin πx + 1

2 sin 2πx + 1
3 sin 3πx + 1

4 sin 4πx + · · ·). The
harmonic content of the sawtooth wave is 1

n . Explain how this
relates to the relative sizes of the Fourier coefficients. The har-
monic content of the square wave is 1

n with even-numbered
harmonics missing. Compare this description to the Fourier
series of example 9.3. The harmonic content of the pulse wave
of width 1

3 is 1
n with every third harmonic missing. Without

computing the Fourier coefficients, write out the general form

of the Fourier series of f (x) =
{−2, if 1/3 < |x | < 1

2, if |x | ≤ 1/3
.

47. The cutoff frequency setting on a music synthesizer has a dra-
matic effect on the timbre of the tone produced. In terms of
harmonic content (see exercise 46), when the cutoff frequency
is set at n > 0, all harmonics beyond the nth harmonic are
set equal to 0. In Fourier series terms, explain how this corre-
sponds to the partial sum Fn(x). For the sawtooth and square
waves, graph the waveforms with the cutoff frequency set at 4.
Compare these to the waveforms with the cutoff frequency set
at 2. As the setting is lowered, you hear more of a “pure” tone.
Briefly explain why.

48. The resonance setting on a music synthesizer also changes
timbre significantly. Set at 1, you get the basic waveform (e.g.,
sawtooth or square). Set at 2, the harmonic content of the first
four harmonics are divided by 2, the fifth harmonic is multiplied
by 3

4 , the sixth harmonic is left the same, the seventh harmonic
is divided by 2 and the remaining harmonics are set to 0. Graph
the sawtooth and square waves with resonance set to 2. Which
one is starting to resemble the saxophone waveform of Figure
7.51?

49. The Gibbs phenomenon is the tendency of approximating par-
tial sums of Fourier series to badly undershoot and overshoot
the limit function near jump discontinuities (places where the
limit function changes rapidly). A black-and-white photograph
can be digitized by partitioning the photograph into small rect-
angles and assigning each rectangle a number. For example, a
pure white rectangle might be a 1 and a pure black rectangle a
10 with grey rectangles assigned values between 1 and 10. The
digitized photograph can then be approximated by a Fourier
series. A sharp edge in a photograph would have a rapid change
from black to white, similar to a jump discontinuity. The rapid
change in values from black to white requires high frequency
components in the Fourier series (i.e., the terms of the series for
large values of k). The photograph on the left is out of focus,
to the point that we can’t read the markings on the plane (you
can imagine this would be important in many tense situations).

By increasing the coefficients in the high frequencies in the
Fourier series representation of the photograph, you can get
the sharper photograph on the right. This photograph also has
a distinct “halo effect” around the plane. Explain how the halo
could be related to the Gibbs phenomenon (photos reprinted
by permission from Visualization by Friedhoff and Benzon).

50. Piano tuning is relatively simple due to the phenomenon stud-
ied in this exercise. Compare the graphs of sin 8t + sin 8.2t and
2 sin 8t . Note especially that the amplitude of sin 8t + sin 8.2t
appears to slowly rise and fall. In the trig identity sin 8t +
sin 8.2t = [2 cos (0.2t)] sin (8.1t), think of 2 cos (0.2t) as the
amplitude of sin (8.1t) and explain why the amplitude varies
slowly. Piano tuners often start by striking a tuning fork of a
certain pitch (e.g., sin 8t) and then striking the corresponding
piano note. If the piano is slightly out-of-tune (e.g., sin 8.2t),
the tuning fork plus piano produces a combined tone that no-
ticeably increases and decreases in volume. Use your graph to
explain why this occurs.

51. The function sin 8π t represents a 4-Hz signal (1 Hz equals
1 cycle per second) if t is measured in seconds. If you received
this signal, your task might be to take your measurements of the
signal and try to reconstruct the function. For example, if you
measured three samples per second, you would have the data
f (0) = 0, f (1/3) = √

3/2, f (2/3) = −√
3/2 and f (1) = 0.

Knowing the signal is of the form A sin Bt , you would use the
data to try to solve for A and B. In this case, you don’t have
enough information to guarantee getting the right values for A
and B. Prove this by finding several values of A and B with
B 	= 8π that match the data. A famous result of H. Nyquist
from 1928 states that to reconstruct a signal of frequency f
you need at least 2 f samples.

52. The energy of a signal f (x) on the interval [−π, π] is de-

fined by E = 1

π

∫ π

−π

[ f (x)]2dx . If f (x) has a Fourier se-

ries f (x) = a0

2
+

∞∑
k=0

(ak cos kx + bk sin kx), show that E =

A2
0 + A2

1 + A2
2 + · · · , where Ak =

√
a2

k + b2
k . The sequence

{Ak} is called the energy spectrum of f (x).

53. Carefully examine the graphs in Figure 7.46. You can see the
Gibbs phenomenon at x = 0. Does it appear that the size of
the Gibbs overshoot changes as the number of terms increases?
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We examine this question here. For the partial sum F2n−1(x), as
defined in example 9.1, it can be shown that the absolute max-

imum occurs at
π

2n
. Evaluate F2n−1

( π

2n

)
for n = 4, n = 6

and n = 8. Show that for large n, the size of the bump is∣∣∣F2n−1

( π

2n

)
− f

( π

2n

)∣∣∣ ≈ 0.09. Gibbs showed that in gen-

eral the size of the bump at a jump discontinuity is about 0.09
times the size of the jump.

54. Some fixes have been devised to reduce the Gibbs phe-

nomenon. Define the σ -factors by σk = sin (kπ/n)

(kπ/n)
for k =

1, 2, . . . , n and consider the modified Fourier sum
a0

2
+

n∑
k=0

(akσk cos kx + bkσk sin kx). For example 9.1, plot the mod-

ified sums for n = 4 and n = 8 and compare to Figure 7.46.

EXPLORATORY EXERCISES

1. Suppose that you wanted to approximate a waveform with sine
functions (no cosines), as in the music synthesizer problem.
Such a Fourier sine series will be derived in this exercise. You
essentially use Fourier series with a trick to guarantee sine
terms only. Start with your waveform as a function defined on
the interval [0, l], for some length l. Then define a function
g(x) that equals f (x) on [0, l] and that is an odd function.

Show that g(x) =
{

f (x) if 0 ≤ x ≤ l
− f (−x) if −l < x < 0

works. Explain

why the Fourier series expansion of g(x) on [−l, l] would
contain sine terms only. This series is the sine series ex-
pansion of f (x). Show the following helpful shortcut: the

sine series coefficients are bk = 1

l

∫ l

−l
g(x) sin

(
kπ

l

)
dx =

2

l

∫ l

0
f (x) sin

(
kπ

l

)
dx . Then compute the sine series ex-

pansion of f (x) = x2 on [0, 1] and graph the limit function on
[−3, 3].

Similarly, develop a Fourier cosine series and find the cosine
series expansion of f (x) = x on [0, 1].

2. Fourier series is a part of the field of Fourier analysis, which is
central to many engineering applications. Fourier analysis in-
cludes the Fourier transforms (and the FFT or fast Fourier trans-
form) and inverse Fourier transforms, to which you will get
a brief introduction in this exercise. Given measurements of a
signal (waveform), the goal is to construct the Fourier series of a
function. To start with a simple version of the problem, suppose
the signal has the form f (x) = a0

2 + a1 cos πx + a2 cos 2πx +
b1 sin πx + b2 sin 2πx and you have the measurements
f (−1) = 0, f

(− 1
2

) = 1, f (0) = 2, f
(

1
2

) = 1 and f (1) = 0.
Substituting into the general equation for f (x), show that

f (−1) = a0

2
− a1 + a2 = 0

f

(
−1

2

)
= a0

2
− a2 − b1 = 1

f (0) = a0

2
+ a1 + a2 = 2

f

(
1

2

)
= a0

2
− a2 + b1 = 1

and f (1) = a0

2
− a1 + a2 = 0.

Note that the first and last equations are identical and that b2

never appears in an equation. Thus, you have four equations and
four unknowns. Solve the equations. (Hint: Start by comparing
the second and fourth equations, then the third and fifth equa-
tions.) You should conclude that f (x) = 1 + cos πx , with no
information about b2. To determine b2, we would need another
function value. In general, the number of measurements deter-
mines how many terms you can find in the Fourier series (see
exercise 51). Fortunately, there is an easier way of determining
the Fourier coefficients. Recall that ak = ∫ 1

−1 f (x) cos nπx dx

and bk = ∫ 1
−1 f (x) sin nπx dx . You can estimate the integral

using function values at x = −1/2, x = 0, x = 1/2 and x = 1.
Find a version of a Riemann sum approximation that gives
a0 = 2, a1 = 1, a2 = 0 and b1 = 0. What value is given for b2?
Use this Riemann sum rule to find the appropriate coefficients
for the data f

(− 3
4

) = 3
4 , f

(− 1
2

) = 1
2 , f

(− 1
4

) = 1
4 , f (0) =

0, f
(

1
4

) = − 1
4 , f

(
1
2

) = − 1
2 , f

(
3
4

) = − 3
4 and f (1) = −1.

Compare to the Fourier series of exercise 13.

7.10 USING SERIES TO SOLVE DIFFERENTIAL EQUATIONS

In chapter 6, we saw how to solve several different types of differential equations. Among
second order equations, we saw how to solve only those with constant coefficients, such as

y′′ − 6y′ + 9y = 0.

In cases such as this, we looked for a solution of the form of y = er x . So, what if the
coefficients aren’t constant? For instance, suppose you wanted to solve the equation

y′′ + 2xy′ + 2y = 0.
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We leave it as an exercise to show that substituting y = er x in this case does not lead to a
solution. However, it turns out that in many cases such as this, we can find a solution by
assuming that the solution can be written as a power series, such as

y =
∞∑

n=0

an xn.

The idea is to substitute this series into the differential equation and then use the resulting
equation to determine the coefficients, a0, a1, a2, . . . , an. Before we see how to do this
in general, we illustrate this for a simple equation, whose solution is already known, to
demonstrate that we arrive at the same solution either way.

EXAMPLE 10.1 Power Series Solution of a Differential Equation

Use a power series to determine the general solution of

y′′ + y = 0.

Solution First, observe that since this equation has constant coefficients, we already
know how to find a solution. We leave it as an exercise to show that the general solution
is

y = c1 sin x + c2 cos x,

where c1 and c2 are constants.
We now look for a solution of the equation in the form of the power series

y = a0 + a1x + a2x2 + a3x3 + · · · =
∞∑

n=0

an xn.

To substitute this into the equation, we first need to obtain representations for y′ and y′′.
Assuming that the power series is convergent and has a positive radius of convergence,
recall that we can differentiate it term-by-term to obtain the derivatives

y′ = a1 + 2a2x + 3a3x2 + · · · =
∞∑

n=1

nan xn−1

and

y′′ = 2a2 + 6a3x + · · · =
∞∑

n=2

n(n − 1)an xn−2.

Substituting these power series into the differential equation, we get

0 = y′′ + y =
∞∑

n=2

n(n − 1) an xn−2 +
∞∑

n=0

an xn. (10.1)

The immediate objective here is to combine the two series in (10.1) into one power series.
Since the powers in the one series are of the form xn−2 and in the other series are of the
form xn , we will first need to rewrite one of the two series. Notice that we have that

y′′ =
∞∑

n=2

n(n − 1)an xn−2 = 2a2 + 3 · 2a3x + 4 · 3a4x2 + · · ·

=
∞∑

n=0

(n + 2)(n + 1)an+2xn.
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Substituting this into equation (10.1) gives us

0 = y′′ + y =
∞∑

n=0

(n + 2)(n + 1) an+2xn +
∞∑

n=0

an xn

=
∞∑

n=2

[(n + 2)(n + 1) an+2 + an]xn. (10.2)

Read equation (10.2) carefully; it says that the power series on the far right converges
to the constant function f (x) = 0. Another way to think of this is as the Taylor series
expansion of the zero function. In view of this, all of the coefficients must be zero. That is,

0 = (n + 2)(n + 1) an+2 + an,

for n = 0, 1, 2, . . . . We solve this for the coefficient with the largest index, to obtain

an+2 = −an

(n + 2)(n + 1)
, (10.3)

for n = 0, 1, 2, . . . . Equation (10.3) is called the recurrence relation. From here, we’d
like to use (10.3) to determine all of the coefficients of the series solution. This may
seem like a tall order, but it’s not as difficult as it sounds. The general idea is to write out
(10.3) for a number of specific values of n and then try to recognize a pattern that the
coefficients follow. We begin by recognizing that (10.3) relates an+2 to an , for each n. In
other words, a2 is related to a0; a4 is related to a2, which in turn is related to a0 and so on.
So, all of the coefficients with even indices (a2, a4, a6, . . .) are all related to a0. Likewise,
you should be able to see that all of the coefficients with odd indices are related to a1. To
recognize the pattern, we simply write out a few terms, as follows. From (10.3), we have
for the even-indexed coefficients that

a2 = −a0

2 · 1
= −1

2!
a0,

a4 = −a2

4 · 3
= 1

4 · 3 · 2 · 1
a0 = 1

4!
a0,

a6 = −a4

6 · 5
= −1

6!
a0,

a8 = −a6

8 · 7
= 1

8!
a0

and so on. (Try to write down a10 by recognizing the pattern, without referring to the
recurrence relation.) Since we can write each even-indexed coeffiecient as a2n , for some n,
note that we can now write down a simple formula that works for any of these coefficients.
We have

a2n = (−1)n

(2n)!
a0, (10.4)

for n = 0, 1, 2, . . . . Similarly, using (10.3), we have that the odd-indexed coefficients are

a3 = −a1

3 · 2
= −1

3!
a1,

a5 = −a3

5 · 4
= 1

5!
a1,

a7 = −a5

7 · 6
= −1

7!
a1,

a9 = −a7

9 · 8
= 1

9!
a1
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and so on. Since we can write each odd-indexed coefficient as a2n+1 (or alternatively as
a2n−1), for some n, note that we have the following simple formula for the odd-indexed
coefficients:

a2n+1 = (−1)n

(2n + 1)!
a1.

Since we have now written every coefficient in terms of either a0 or a1, we can rewrite
the solution by separating the a0 terms from the a1 terms. We have

y =
∞∑

n=0

an xn = a0 + a1x + a2x2 + a3x3 + · · ·

= a0

(
1 − 1

2!
x2 + 1

4!
x4 + · · ·

)
+ a1

(
x − 1

3!
x3 + 1

5!
x5 + · · ·

)

= a0

∞∑
n=0

(−1)n

(2n)!
x2n

︸ ︷︷ ︸
y1(x)

+ a1

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1

︸ ︷︷ ︸
y2(x)

= a0 y1(x) + a1 y2(x), (10.5)

where y1(x) and y2(x) are two solutions of the differential equation (assuming the series
converge). At this point, you should be able to easily check that both of the indicated
power series converge absolutely for all x , by using the Ratio Test. Beyond this, you
might also recognize that the series solutions y1(x) and y2(x) that we obtained are in fact,
the Maclaurin series expansions of cos x and sin x , respectively. In light of this, (10.5) is
an equivalent solution to that found by using the methods of Chapter 6. �

The method used to solve the differential equation in example 10.1 is certainly far more
complicated than the methods we used in Chapter 6 for solving the same equation. It is
not our intention here to provide you with a new and even more complicated method for
solving the same old equations. Rather, this new method can be used to solve a wider range
of differential equations than those solvable using our earlier methods. Now that we have
verified that our new power series method gives the same solution as our earlier method,
we turn our attention to equations that cannot be solved using our earlier, simpler methods.
We begin by returning to an equation mentioned in the introduction to this section.

EXAMPLE 10.2 Solving a Differential Equation
with Variable Coefficients

Find the general solution of the differential equation

y′′ + 2xy′ + 2y = 0.

Solution First, observe that since the coefficient of y′ is not constant, we have little
choice but to look for a series solution of the equation. As in example 10.1, we begin by
assuming that we may write the solution as a power series,

y =
∞∑

n=0

an xn.

As before, we have

y′ =
∞∑

n=1

nan xn−1
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and

y′′ =
∞∑

n=2

n(n − 1)an xn−2.

Substituting these three power series into the equation, we get

0 = y′′ + 2xy′ + 2y =
∞∑

n=2

n(n − 1) an xn−2 + 2x
∞∑

n=1

nan xn−1 + 2
∞∑

n=0

an xn

=
∞∑

n=2

n(n − 1) an xn−2 +
∞∑

n=1

2nan xn +
∞∑

n=0

2an xn, (10.6)

where in the middle term, we moved the x into the series and combined powers of x . In
order to combine the three series, we must only rewrite the first series so that its general
term is a multiple of xn , instead of xn−2. As we did in example 10.1, we have

∞∑
n=2

n(n − 1) an xn−2 =
∞∑

n=0

(n + 2)(n + 1) an+2xn,

and so, from (10.6), we have

0 =
∞∑

n=2

n(n − 1) an xn−2 +
∞∑

n=1

2nan xn +
∞∑

n=0

2an xn

=
∞∑

n=0

(n + 2)(n + 1) an+2xn +
∞∑

n=0

2nan xn +
∞∑

n=0

2an xn

=
∞∑

n=0

[(n + 2)(n + 1) an+2 + 2nan + 2an]xn

=
∞∑

n=0

[(n + 2)(n + 1) an+2 + 2 (n + 1) an]xn. (10.7)

To get this, we used the fact that
∞∑

n=1
2nan xn =

∞∑
n=0

2nan xn . (Notice that the first term

in the series on the right is zero!) Reading equation (10.7) carefully, note that we again
have a power series converging to the zero function, from which it follows that all of the
coefficients must be zero:

0 = (n + 2)(n + 1) an+2 + 2(n + 1)an,

for n = 0, 1, 2, . . . . Again solving for the coefficient with the largest index, we get the
recurrence relation

an+2 = − 2(n + 1)an

(n + 2)(n + 1)

or

an+2 = − 2an

n + 2
.
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Much like we saw in example 10.1, the recurrence relation tells us that every second
coefficient is related, so that all of the even-indexed coefficients are related to a0 and all
of the odd-indexed coefficients are related to a1. In order to try to recognize the pattern,
we write out a number of terms, using the recurrence relation. We have

a2 = −2

2
a0 = −a0,

a4 = −2

4
a2 = 1

2
a0,

a6 = −2

6
a4 = − 1

3!
a0,

a8 = −2

8
a6 = 1

4!
a0

and so on. At this point, you should recognize the pattern for these coefficients. (If not,
write out a few more terms.) Note that we can write the even-indexed coefficients as

a2n = (−1)n

n!
a0,

for n = 0, 1, 2, . . . . Be sure to match this formula against those coefficients calculated
above to see that they match. Continuing with the odd-indexed coefficients, we have from
the recurrence relation that

a3 = −2

3
a1,

a5 = −2

5
a3 = 22

5 · 3
a1,

a7 = −2

7
a5 = − 23

7 · 5 · 3
a1,

a9 = −2

9
a7 = 24

9 · 7 · 5 · 3
a1

and so on. While you might recognize the pattern here, unlike the case for the even-
indexed coefficients, it’s a bit harder to write down this pattern succinctly. Observe that
the products in the denominators are not quite factorials. Rather, they are the products of
the first so many odd numbers. The solution to this is to write this as a factorial, but then
cancel out all of the even integers in the product. In particular, note that

1

9 · 7 · 5 · 3
=

2·4︷︸︸︷
8 .

2·3︷︸︸︷
6 .

2·2︷︸︸︷
4 .

2·4︷︸︸︷
2

9!
= 24 · 4!

9!
,

so that a9 becomes

a9 = 24

9 · 7 · 5 · 3
a1 = 24 · 24 · 4!

9!
a1 = 22·4 · 4!

9!
a1.

More generally, we now have

a2n+1 = (−1)n 22nn!

(2n + 1)!
a1,

for n = 0, 1, 2, . . . .
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Now that we have expressions for all of the coefficients, we can write the solution
of the differential equation as

y =
∞∑

n=0

an xn =
∞∑

n=0

(
a2n x2n + a2n+1x2n+1

)

= a0

∞∑
n=0

(−1)n

n!
x2n

︸ ︷︷ ︸
y1(x)

+ a1

∞∑
n=0

(−1)n22nn!

(2n + 1)!︸ ︷︷ ︸
y2(x)

x2n+1

= a0 y1(x) + a1 y2(x),

y

x
1

2

4

6

8

10

2 3�2�3 �1

FIGURE 7.53a
y = y1(x).

y

x
1

0.2

�0.2

�0.4

�0.6

0.4

0.6

2 3�2�3 �1

FIGURE 7.53b
y = y2(x).

where y1 and y2 are two power series solutions of the differential equation. We leave it
as an exercise to use the Ratio Test to show that both of these series converge absolutely
for all x . You are unlikely to recognize these two power series as Taylor series of familiar
functions as we did in example 10.1, but even so, these are perfectly good solutions.
(Actually, you might recognize the power series for y1(x) as e−x2

, but in practice recog-
nizing series solutions as power series of familiar functions is rather unlikely.) To give
you an idea of the behavior of these functions, we draw a graph of y1(x) in Figure 7.53a
and of y2(x) in Figure 7.53b. We obtained these graphs by plotting the partial sums of
these series. In particular, it’s worth noting that neither of these solutions is in the form
y = er x , for any value of r . So, looking for a solution in this form, as we did for the case
of a differential equation with constant coefficients cannot work here. �

From examples 10.1 and 10.2, you might get the idea that if you look for a series
solution, you can always recognize the pattern of the coefficients and write the pattern
down succinctly. Unfortunately, this is not at all true. Most often, the pattern is difficult to
see and even more difficult to write down compactly. Still, series solutions are a valuable
means of solving a differential equation. In the worst case, you can always compute a
number of the coefficients of the series from the recurrence relation and then use the first
so many terms of the series as an approximation to the actual solution.

In the final example, we illustrate the more common case where the coefficients are a
bit more challenging to find.

EXAMPLE 10.3 A Series Solution Where the Coefficients
Are Harder to Find

Use a power series to find the general solution of Airy’s equation

y′′ − xy = 0.

Solution As in both our previous examples, we begin by assuming that we may write
the solution as a power series

y =
∞∑

n=0

an xn.

Again, we have

y′ =
∞∑

n=1

nan xn−1
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and

y′′ =
∞∑

n=2

n(n − 1)an xn−2.

Subsituting these power series into the equation, we get

0 = y′′ − xy =
∞∑

n=2

n(n − 1)an xn−2 − x
∞∑

n=0

an xn

=
∞∑

n=2

n(n − 1) an xn−2 −
∞∑

n=0

an xn+1.

In order to combine the two preceding series, we must rewrite one or both series so that
they both have the same power of x . For simplicity, we rewrite the first series only. We have

0 =
∞∑

n=2

n(n − 1) an xn−2 −
∞∑

n=0

an xn+1

=
∞∑

n=−1

(n + 3)(n + 2) an+3xn+1 −
∞∑

n=0

an xn+1

= (2)(1) a2 +
∞∑

n=0

(n + 3)(n + 2) an+3xn+1 −
∞∑

n=0

an xn+1

= 2a2 +
∞∑

n=0

[(n + 3)(n + 2) an+3 − an]xn+1,

where we wrote out the first term of the first series and then combined the two series,
once both had an index that started with n = 0. Again, this is a power series expansion
of the zero function and so, all of the coefficients must be zero. That is,

0 = 2a2 (10.8)

and

0 = (n + 3)(n + 2) an+3 − an, (10.9)

for n = 0, 1, 2, . . . . Notice that equation (10.8) says that a2 = 0. As we have seen before,
(10.9) gives us the recurrence relation

an+3 = 1

(n + 3)(n + 2)
an, (10.10)

for n = 0, 1, 2, . . . . Notice that here, instead of having all of the even-indexed coefficients
related to a0 and all of the odd-indexed coefficients related to a1, we have a slightly
different situation. In this case, (10.10) tells us that every third coefficient is related. In
particular, notice that since a2 = 0,(10.10) now says that

a5 = 1

5 · 4
a2 = 0,

a8 = 1

8 · 7
a5 = 0

and so on. So, every third coefficient starting with a2 is zero. But, how do we concisely
write down something like this? Think about the notation a2nand a2n+1 that we have used
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previously. You can view a2n as a representation of every second coefficient stating with
a0. Likewise, a2n+1 represents every second coefficient starting with a1. In the present
case, if we want to write down every third coefficient starting with a2, we write a3n+2.

We can now observe that

a3n+2 = 0,

for n = 0, 1, 2, . . . . Continuing on with the remaining coefficients, we have from (10.10)
that

a3 = 1

3 · 2
a0,

a6 = 1

6 · 5
a3 = 1

6 · 5 · 3 · 2
a0,

a9 = 1

9 · 8
a6 = 1

9 · 8 · 6 · 5 · 3 · 2
a0

and so on. Hopefully, you see the pattern that’s developing for these coefficients. The
trouble here is that it’s not as easy to write down this pattern as it was in the first two
examples. Notice that the denominator in the expression for a9 is almost 9!, but with
every third factor in the product deleted. Since we don’t have a way of succinctly writing
this down, we write the coefficients by indicating the pattern, as follows:

a3n = (3n − 2)(3n − 5) · · · 7 · 4 · 1

(3n)!
a0,

where this is not intended as a literal formula, as explicit substitution of n = 0 or n =
1 would result in negative values. Rather, this is an indication of the general pattern.
Similarly, the recurrence relation gives us

a4 = 1

4 · 3
a1,

a7 = 1

7 · 6
a4 = 1

7 · 6 · 4 · 3
a1,

a10 = 1

10 · 9
a7 = 1

10 · 9 · 7 · 6 · 4 · 3
a1

and so on. More generally, we can establish the pattern:

a3n+1 = (3n − 1)(3n − 4) · · · 8 · 5 · 2

(3n + 1)!
a1,

where again, this is not intended as a literal formula.
Now that we have found all of the coefficients, we can write the solution, by separately

writing out every third term of the series, as follows:

y =
∞∑

n=0

an xn =
∞∑

n=0

(
a3n x3n + a3n+1x3n+1 + a3n+2x3n+2

)

= a0

∞∑
n=0

(3n − 2)(3n − 5) · · · 7 · 4 · 1

(3n)!
x3n

︸ ︷︷ ︸
y1(x)

+ a1

∞∑
n=0

(3n − 1)(3n − 4) · · · 8 · 5 · 2

(3n + 1)!
x3n+1

︸ ︷︷ ︸
y2(x)

= a0 y1(x) + a1 y2(x).
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We leave it as an exercise to use the Ratio Test to show that the power series defining y1

and y2 are absolutely convergent for all x . �

You may have noticed that in all three of our examples, we assumed that there was a
solution of the form

y =
∞∑

n=0

an xn = a0 + a1x + a2x2 + · · · ,

only to arrive at the general solution

y = a0 y1(x) + a1 y2(x),

where y1 and y2 were power series solutions of the equation. This is in fact not coincidental.
One can show that (at least for certain equations) this is always the case. One clue as to why
this might be so lies in the following.

Suppose that we want to solve the initial value problem consisting of a second order
differential equation and the initial conditions y(0) = A and y′(0) = B. Taking y(x) =
∞∑

n=0
an xn gives us

y′(x) =
∞∑

n=0

nan xn−1 = a1 + 2a2x + 3a3x2 + · · · .

So, imposing the initial conditions, we have

A = y(0) = a0 + a1(0) + a2(0)2 + · · · = a0

and

B = y′(0) = a1 + 2a2(0) + 3a3(0)2 + · · · = a1.

So, irrespective of the particular equation we’re solving, we always have y(0) = a0 and
y′(0) = a1.

You might ask what you’d do if the initial conditions were imposed at some point other
than at x = 0, say at x = x0. In this case, we look for a power series solution of the form

y =
∞∑

n=0

an(x − x0)n.

It’s easy to show that in this case, we still have y(x0) = a0 and y′(x0) = a1.

In the exercises, we explore finding series solutions about a variety of different points.

EXERCISES 7.10

WRITING EXERCISES

1. After substituting a power series representation into a differ-
ential equation, the next step is always to rewrite one or more
of the series so that all series have the same exponent. (Typi-
cally, we want xn .) Explain why this is an important step. For
example, what would we be unable to do if the exponents were
not the same?

2. The recurrence relation is typically solved for the coefficient
with the largest subscript. Explain why this is an important step.

3. Explain why you can’t solve equations with non-constant
coefficients, like

y′′ + 2xy′ + 2y = 0

by looking for a solution in the form y = er x .

4. The differential equations solved in this section are actually
of a special type, where we find power series solutions cen-
tered at what is called an ordinary point. For the equation
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x2 y′′ + y′ + 2y = 0, the point x = 0 is not an ordinary point.
Discuss what goes wrong here if you look for a power series

solution of the form
∞∑

n=0
an xn .

In exercises 1–8, find the recurrence relation and general power

series solution of the form
∞∑

n���0
anxn.

1. y′′ + 2xy′ + 4y = 0 2. y′′ + 4xy′ + 8y = 0

3. y′′ − xy′ − y = 0 4. y′′ − xy′ − 2y = 0

5. y′′ − xy′ = 0 6. y′′ + 2xy = 0

7. y′′ − x2 y′ = 0 8. y′′ + xy′ − 2y = 0

9. Find a series solution of y′′ + (1 − x)y′ − y = 0, in the form

y =
∞∑

n=0
an(x − 1)n .

10. Find a series solution of y′′ + y′ + (x − 2)y = 0 in the form
∞∑

n=0
an(x − 2)n .

11. Find a series solution of Airy’s equation y′′ − xy = 0 in the

form
∞∑

n=0
an(x − 1)n . [Hint: First rewrite the equation in the

form y′′ − (x − 1)y − y = 0.]

12. Find a series solution of Airy’s equation y′′ − xy = 0 in the

form
∞∑

n=0
an(x − 2)n .

13. Solve the initial value problem y′′ + 2xy′ + 2y = 0, y(0) = 5,

y′(0) = −7. (See exercise 1.)

14. Solve the initial value problem y′′ + 4xy′ + 8y = 0, y(0) = 2,

y′(0) = π. (See exercise 2.)

15. Solve the initial value problem y′′ + (1 − x)y′ − y = 0,

y(1) = −3, y′(1) = 12. (See exercise 9.)

16. Solve the initial value problem y′′ + y′ + (x − 2)y = 0, y(2) = 1,

y′(2) = −1. (See exercise 10.)

17. Determine the radius of convergence of the power series solu-
tions about x0 = 0 of y′′ − xy′ − y = 0. (See exercise 3.)

18. Determine the radius of convergence of the power series solu-
tions about x0 = 0 of y′′ − xy′ − 2y = 0. (See exercise 12.)

19. Determine the radius of convergence of the power series solu-
tions about x0 = 1 of y′′ + (1 − x)y′ − y = 0. (See exercise 9.)

20. Determine the radius of convergence of the power series solu-
tions about x0 = 1 of y′′ − xy = 0 (See exercise 11.)

21. Find a series solution of the form y =
∞∑

n=0
an xn to the equation

x2 y′′ + xy′ + x2 y = 0 (Bessel’s equation of order 0).

22. Find a series solution of the form y =
∞∑

n=0
an xn to the equa-

tion x2 y′′ + xy′ + (x2 − 1)y = 0 (Bessel’s equation of
order 1).

23. Determine the radius of convergence of the series solution
found in example 10.3.

24. Determine the radius of convergence of the series solution
found in problem 11.

25. For the initial value problem y′′ + 2xy′ − xy = 0, y(0) = 2,

y′(0) = −5 substitute in x = 0 and show that y′′(0) = 0. Then
take y′′ = −2xy′ + xy and show that y′′′ = −2xy′′ + (x −
2)y′ + y. Conclude that y′′′(0) = 12. Then compute y(4)(x)
and find y(4)(0). Finally, compute y(5)(x) and find y(5)(0).
Write out the fifth-degree Taylor polynomial for the solution,

P5(x) = y(0) + y′(0)x + y′′(0)
x2

2
+ y′′′(0)

x3

3!
+ y(4)(0)

x4

4!
+

y(5)(0)
x5

5!
.

26. Use the technique of exercise 25 to find the fifth-degree Taylor
polynomial for the solution of the initial value problem
y′′ + x2 y′ − (cos x)y = 0, y(0) = 3, y′(0) = 2.

27. Use the technique of exercise 25 to find the fifth-degree Taylor
polynomial for the solution of the initial value problem
y′′ + ex y′ − (sin x)y = 0, y(0) = −2, y′(0) = 1.

28. Use the technique of exercise 25 to find the fifth-degree Taylor
polynomial for the solution of the initial value problem
y′′ + y′ − (ex )y = 0, y(0) = 2, y′(0) = 0.

29. Use the technique of exercise 25 to find the fifth-degree Taylor
polynomial for the solution of the initial value problem
y′′ + xy′ + (sin x)y = 0, y(π ) = 0, y′(π ) = 4.

30. Use the technique of exercise 25 to find the fifth-degree Taylor
polynomial for the solution of the initial value problem
y′′ + (cos x)y′ + xy = 0, y( π

2 ) = 3, y′( π

2 ) = 0.

EXPLORATORY EXERCISES

1. The equation y′′ − 2xy′ + 2ky = 0 for some integer k ≥ 0 is
known as Hermite’s equation. Following our procedure for
finding series solutions in powers of x, show that in fact one of
the series solutions is simply a polynomial of degree k. For this
polynomial solution, choose the arbitrary constant such that
the leading term of the polynomial is 2k xk . The polynomial
is called the Hermite polynomial Hk(x). Find the Hermite
polynomials H0(x), H1(x), . . . , H5(x).

2. The Chebyshev polynomials are polynomial solutions of the
equation (1 − x2)y′′ − xy′ + k2 y = 0 for some integer k ≥ 0.

Find polynomial solutions for k = 0, 1, 2, and 3.
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REVIEW EXERCISES

CONCEPTS

The following list includes terms that are defined and theorems that
are stated in this chapter. For each term or theorem, (1) give a precise
definition or statement, (2) state in general terms what it means and
(3) describe the types of problems with which it is associated.

Sequence Limit of sequence Squeeze Theorem
Infinite series Partial sum Series converges
Series diverges Geometric series kth-term test for
Harmonic series Integral Test divergence
Comparison Test Limit Comparison p-Series
Conditional Test Alternating Series Test

convergence Absolute convergence Alternating harmonic
Ratio Test Root Test series
Radius of Taylor series Power series

convergence Fourier series Taylor polynomial
Taylor’s Theorem Recurrence relation

TRUE OR FALSE

State whether each statement is true or false and briefly explain
why. If the statement is false, try to “fix it” by modifying the given
statement to a new statement that is true.

1. An increasing sequence diverges to infinity.

2. As n increases, n! increases faster than 10n .

3. If the sequence an diverges, then the series
∞∑

k=1
ak diverges.

4. If an decreases to 0 as n→ ∞, then
∞∑

k=1
ak diverges.

5. If
∫ ∞

1 f (x) dx converges, then
∞∑

k=1
ak converges for ak = f (k).

6. If the Comparison Test can be used to determine the conver-
gence or divergence of a series, then the Limit Comparison
Test can also determine the convergence or divergence of the
series.

7. Using the Alternating Series Test, if lim
k→∞

ak 	= 0, then you can

conclude that
∞∑

k=1
ak diverges.

8. The difference between a partial sum of a convergent se-
ries and its sum is less than the first neglected term in the
series.

9. If a series is conditionally convergent, then the Ratio Test will
be inconclusive.

10. A series with all negative terms cannot be conditionally
convergent.

11. If
∞∑

k=1
|ak | diverges, then

∞∑
k=1

ak diverges.

12. A series may be integrated term-by-term, and the interval of
convergence will remain the same.

13. A Taylor series of a function f is simply a power series repre-
sentation of f .

14. The more terms in a Taylor polynomial, the better the
approximation.

15. The Fourier series of x2 converges to x2 for all x .

16. A recurrence relation can always be solved to find the solution
of a differential equation.

In exercises 1–8, determine whether the sequence converges or
diverges. If it converges, give the limit.

1. an = 4

3 + n
2. an = 3n

1 + n

3. an = (−1)n n

n2 + 4
4. an = (−1)n n

n + 4

5. an = 4n

n!
6. an = n!

nn

7. an = cos πn 8. an = cos nπ

n

In exercises 9–18, answer with “converges” or “diverges” or
“can’t tell.”

9. If lim
k→∞

ak = 1, then
∞∑

k=1
ak .

10. If lim
k→∞

ak = 0, then
∞∑

k=1
ak .

11. If lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = 1, then
∞∑

k=1
ak .

12. If lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = 0, then
∞∑

k=1
ak .

13. If lim
k→∞

ak = 1

2
, then

∞∑
k=1

ak .

14. If lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = 1

2
, then

∞∑
k=1

ak .
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15. If lim
k→∞

k
√

|ak | = 1

2
, then

∞∑
k=1

ak .

16. If lim
k→∞

k2ak = 0, then
∞∑

k=1
ak .

17. If p > 1, then
∞∑

k=1

8

k p
.

18. If r > 1, then
∞∑

k=1
ark .

In exercises 19–22, find the sum of the convergent series.

19.
∞∑

k=0

4

(
1

2

)k

20.
∞∑

k=1

4

k(k + 2)

21.
∞∑

k=0

4−k 22.
∞∑

k=0

(−1)k 3

4k

In exercises 23 and 24, estimate the sum of the series to within
0.01.

23.
∞∑

k=0

(−1)k k

k4 + 1
24.

∞∑
k=0

(−1)k+1 3

k!

In exercises 25–44, determine if the series converges or diverges.

25.
∞∑

k=0

2k

k + 3
26.

∞∑
k=0

(−1)k 2k

k + 3

27.
∞∑

k=0

(−1)k 4√
k + 1

28.
∞∑

k=0

4√
k + 1

29.
∞∑

k=1

3k−7/8 30.
∞∑

k=1

2k−8/7

31.
∞∑

k=1

√
k

k3 + 1
32.

∞∑
k=1

k√
k3 + 1

33.
∞∑

k=1

(−1)k 4k

k!
34.

∞∑
k=1

(−1)k 2k

k

35.
∞∑

k=1

(−1)k ln

(
1 + 1

k

)
36.

∞∑
k=1

cos kπ√
k

37.
∞∑

k=1

2

(k + 3)2
38.

∞∑
k=2

4

k ln k

39.
∞∑

k=1

k!

3k
40.

∞∑
k=1

k

3k

41.
∞∑

k=1

e1/k

k2
42.

∞∑
k=1

1

k
√

ln k + 1

43.
∞∑

k=1

4k

(k!)2
44.

∞∑
k=1

k2 + 4

k3 + 3k + 1

In exercises 45–48, determine if the series converges absolutely,
converges conditionally or diverges.

45.
∞∑

k=1

(−1)k k

k2 + 1
46.

∞∑
k=1

(−1)k 3

k + 1

47.
∞∑

k=1

sin k

k3/2
48.

∞∑
k=1

(−1)k+1 3

ln k + 1

In exercises 49 and 50, find all values of p for which the series
converges.

49.
∞∑

k=1

2

(3 + k)p
50.

∞∑
k=1

ekp

In exercises 51 and 52, determine the number of terms necessary
to estimate the sum of the series to within 10−6.

51.
∞∑

k=1

(−1)k 3

k2
52.

∞∑
k=1

(−1)k 2k

k!

In exercises 53–56, find a power series representation for the
function. Find the radius of convergence.

53.
1

4 + x
54.

2

6 − x

55.
3

3 + x2
56.

2

1 + 4x2

In exercises 57 and 58, use the series from exercises 53 and 54
to find a power series and its radius of convergence.

57. ln (4 + x) 58. ln (6 − x)

In exercises 59–66, find the interval of convergence.

59.
∞∑

k=0

(−1)k2xk 60.
∞∑

k=0

(−1)k(2x)k

61.
∞∑

k=1

(−1)k 2

k
xk 62.

∞∑
k=1

−3√
k

( x

2

)k

63.
∞∑

k=0

4

k!
(x − 2)k 64.

∞∑
k=0

k2(x + 3)k

65.
∞∑

k=0

3k(x − 2)k 66.
∞∑

k=0

k

4k
(x + 1)k

In exercises 67 and 68, derive the Taylor series of f (x) about the
center x ��� c.

67. f (x) = sin x, c = 0 68. f (x) = 1

x
, c = 1
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In exercises 69 and 70, find the Taylor polynomial P4(x). Graph
f (x) and P4(x).

69. f (x) = ln x, c = 1 70. f (x) = 1√
x

, c = 1

In exercises 71 and 72, use the Taylor polynomials from exercises
69 and 70 to estimate the given values. Determine the order of the
Taylor polynomial needed to estimate the value to within 10−8.

71. ln 1.2 72.
1√
1.1

In exercises 73 and 74, use a known Taylor series to find a Taylor
series of the function and find its radius of convergence.

73. e−3x2
74. sin 4x

In exercises 75 and 76, use the first five terms of a known Taylor
series to estimate the value of the integral.

75.
∫ 1

0
tan−1 x dx 76.

∫ 2

0
e−3x2

dx

In exercises 77 and 78, derive the Fourier series of the function.

77. f (x) = x, −2 ≤ x ≤ 2

78. f (x) =
{

0 if −π < x ≤ 0
1 if 0 < x ≤ π

In exercises 79–82, graph at least three periods of the function
to which the Fourier series expansion of the function converges.

79. f (x) = x2, −1 ≤ x ≤ 1

80. f (x) = 2x, −2 ≤ x ≤ 2

81. f (x) =
{−1 if −1 < x ≤ 0

1 if 0 < x ≤ 1

82. f (x) =
{

0 if −2 < x ≤ 0
x if 0 < x ≤ 2

83. Suppose you and your friend take turns tossing a coin. The
first one to get a head wins. Obviously, the person who goes
first has an advantage, but how much of an advantage is it? If
you go first, the probability that you win on your first toss is
1
2 , the probability that you win on your second toss is 1

8 , the
probability that you win on your third toss is 1

32 and so on. Sum
a geometric series to find the probability that you win.

84. In a game similar to that of exercise 83, the first one to roll a
4 on a six-sided die wins. Is this game more fair than the pre-
vious game? The probabilities of winning on the first, second
and third roll are 1

6 , 25
216 and 625

7776 , respectively. Sum a geometric

series to find the probability that you win.

In exercises 85 and 86, find the recurrence relation and a general

power series solution of the form
∞∑

n���0
anxn.

85. y′′ − 2xy′ − 4y = 0 86. y′′ + (x − 1)y′ = 0

In exercises 87 and 88, find the recurrence relation and a general

power series solution of the form
∞∑

n���0
an(x − 1)n.

87. y′′ − 2xy′ − 4y = 0 88. y′′ + (x − 1)y′ = 0

In exercises 89 and 90, solve the initial value problem.

89. y′′ − 2xy′ − 4y = 0, y(0) = 4, y′(0) = 2

90. y′′ − 2xy′ − 4y = 0, y(1) = 2, y′(1) = 4

CONNECTIONS

1. The challenge here is to determine
∞∑

k=1

xk

k(k + 1)
as completely

as possible. Start by finding the interval of convergence. Find
the sum for the special cases (a) x = 0 and (b) x = 1. For
0 < x < 1, do the following. (c) Rewrite the series using the

partial fractions expansion of
1

k(k + 1)
. (d) Because the se-

ries converges absolutely, it is legal to rearrange terms. Do so

and rewrite the series as x + x − 1

x

[
1
2 x2 + 1

3 x3 + 1
4 x4 + · · ·].

(e) Identify the series in brackets as
∫ ( ∞∑

k=1
xk

)
dx , evaluate

the series and then integrate term-by-term. (f) Replace the
term in brackets in part (d) with its value obtained in part (e).
(g) The next case is for −1 < x < 0. Use the technique in parts
(c)–(f) to find the sum. (h) Evaluate the sum at x = −1 using
the fact that the alternating harmonic series sums to ln 2. (Used
by permission of Virginia Tech Mathematics Contest. Solution
suggested by Gregory Minton.)

2. You have used Fourier series to show that
∞∑

k=1

1

k2
= π2

6
. Here,

you will use a version of Vièta’s formula to give an alternative
derivation. Start by using a Maclaurin series for sin x to derive a

series for f (x) = sin
√

x√
x

. Then find the zeros of f (x). Vièta’s

formula states that the sum of the reciprocals of the zeros of
f (x) equals the negative of the coefficient of the linear term in
the Maclaurin series of f (x) divided by the constant term. Take
this equation and multiply by π2 to get the desired formula.
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Use the same method with a different function to show that
∞∑

k=1

1

(2k − 1)2
= π 2

8
.

3. Recall the Fibonacci sequence defined by a0 = 1, a1 = 1, a2 =
2 and an+1 = an + an−1. Prove the following fact: lim

n→∞
an+1

an
=

1 + √
5

2
. (This number, known to the ancient Greeks, is called

the golden ratio.) (Hint: Start with an+1 = an + an−1 and di-

vide by an . If r = lim
n→∞

an+1

an
, argue that lim

n→∞
an−1

an
= 1

r and

then solve the equation r = 1 + 1
r .) The Fibonacci sequence

can be visualized with the following construction. Start with
two side-by-side squares of side 1 (Figure A). Above them,
draw a square (Figure B), which will have side 2. To the left
of that, draw a square (Figure C), which will have side 3. Con-
tinue to spiral around, drawing squares which have sides given
by the Fibonacci sequence. For each bounding rectangle in
Figures A–C, compute the ratio of the sides of the rectangle.
(Hint: Start with 2

1 and then 3
2 .) Find the limit of the ratios as the

construction process continues. The Greeks proclaimed this to

be the most “pleasing” of all rectangles, building the Parthenon
and other important buildings with these proportions (see The
Divine Proportion by H. E. Huntley).

FIGURE A FIGURE B FIGURE C

4. Another type of sequence studied by mathematicians is the
continued fraction. Numerically explore the sequence 1 +
1

1
, 1 + 1

1 + 1
1

, 1 + 1

1 + 1
1+ 1

1

and so on. This is yet another oc-

curence of the golden ratio. Viscount Brouncker, a seventeenth-
century English mathematician, showed that the sequence

1 + 12

2
, 1 + 12

2 + 32

2

, 1 + 12

2 + 32

2+ 52
2

and so on, converges to
4

π

(see A History of Pi by Petr Beckmann). Explore this sequence
numerically.


