No calculator is allowed. No credit will be given for an answer without reasoning

1. Given that

$$
\mathbf{r}(t)=<e^{2 t}, t^{2}-t, \cos 2 t>
$$

calculate

- (2 pts)

$$
\lim _{t \rightarrow 0} \mathbf{r}(t)=?
$$

- (2 pts)

$$
\frac{d}{d t} \mathbf{r}(t)=?
$$

- (4 pts)

$$
\int_{1}^{s} \mathbf{r}(t) d t=?
$$

2. Given the position function

$$
\mathbf{r}(t)=<\sin 2 t, \cos 2 t, t>
$$

- (2 pts) find the velocity, $\mathbf{v}(t)$
- (2 pts) find the acceleration, $\mathbf{a}(t)$
- (6 pts) find the unit tangent vector $\mathbf{T}(t)$ and the principal unit normal vector $\mathbf{N}(t)$
- $(3 \mathrm{pts})$ find the binormal vector $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$
- (3 pts) find the curvature $\kappa=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}$
- (4 pts) find the tangential and normal component of acceleration $\mathbf{a}(t)$, i.e. find a_{T} and a_{N} of

$$
\mathbf{a}(t)=a_{T} \mathbf{T}(t)+a_{N} \mathbf{N}(t)
$$

3. (8 pts) Show that the limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{3} y}{x^{6}+y^{2}}
$$

4. (10 pts) Show that the limit exists. (You can use polar coordinates)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}}
$$

5. (8 pts) Find the indicated partial derivatives.

$$
f(x, y)=x^{3}-3 x y+y^{3} ; \quad f_{x}, \quad f_{y}, \quad f_{x y}, \quad f_{x x}
$$

6. (8 pts) Find the equation of the tangent plane to the surface at the given point.

$$
z=x^{2}-y^{2}+1 \quad \text { at }(2,1,2)
$$

7. (8 pts) For a differentiable function $g(u, v)=f(x(u, v), y(u, v))$ with $x(u, v)=u \cos v$ and $y(u, v)=u \sin v$ and where $f_{x y}$ and $f_{y x}$ are continuous, compute f_{u}, f_{v} and $f_{u u}$.

$$
f(x, y)=4 x^{2} y^{3}
$$

8. (8 pts) Given that $f(x, y)=x^{2}-y^{2}$, find the gradient of $f(x, y)$ at $(2,1)$ and compute the directional derivative of f in the direction of $\mathbf{u}=<\frac{1}{2}, \frac{\sqrt{3}}{2}>$
9. (10 pts) For $f(x, y)=x^{3}-3 x+\frac{1}{3} x y^{2}$, locate all critical points and classify them.
10. (12 pts) Find the maximum and minimum of the function $f(x, y)$ subject to the constraint $g(x, y) \leq c$.

$$
f(x, y)=x^{3}-3 x+\frac{1}{3} x y^{2}, \quad \text { subject to } x^{2}+y^{2} \leq 3
$$

