Steady-State Problems

HDG

Summary

Discontinuous Galerkin Methods

Min-Hung Chen

Department of Mathematics, NCKU

2020 Summer Workshop for Scientific Computing Sep. 1, 2020

・ロト ・雪 ・ ・ ヨ ・

Steady-State Problems

DG 000000 Summary

Outline

- Linear Hyperbolic System
- 3 Steady-State Problems
 - Elliptic Problems
 - Fenics and Colab
 - 4 HDG
 - Elliptic Model Problem
 - Matlab tools for HDG HDG3D

Summary

< 17 ▶

A B + A B +

Introduction
000
000000
Introduction

Steady-State Problems

IDG 20000000 Summary

Introduction

What is the Discontinuous Galerkin Method?:

- a method between a finite element and a finite volume method
- local to the generating element
- a practical framework for the development of high-order accurate methods using unstructured grids

Steady-State Problems

HDG 0000000 Summary

A short (and biased) historical overview of the DGM¹

- First DG method introduced in 1973 by Reed and Hill for linear transport.
- First studied in 1974 by Lesaint and Raviart.
- Extended to nonlinear hyperbolic conservation laws in the 90's by B. Cockburn and C.-W. Shu.
- Extended to compressible flow in 1997 first by F. Bassi and S. Rebay.
- New DG methods for diffusion appear and some old ones (the IP methods of the late 70's) are resuscitated. A unified analysis is proposed in 2002 by D. Arnold, F. Brezzi, B. Cockburn and D. Marini.
- They clash with the well-established mixed and continuous Galerkin methods. In response, the HDG methods are introduced in 2009 by B. Cockburn, J. Gopalakrishnan and R. Lazarov. The HDG methods are strongly related to the hybrid methods and to the hybridization techniques of the mid 60's introduced as implementation techniques for mixed methods.

https://www.lacan.upc.edu/dg2017/

Introduction oo● oooooo	Linear Hyperbolic System
Introduction	

Steady-State Problems

DG 000000 Summary

Notation

Jump Operator:

$$\llbracket w \rrbracket = \begin{cases} w|_{K^+} n^+ + w|_{K^-} n^- \\ wn \\ v|_{K^+} \cdot n^+ + v|_{K^-} \cdot n^- \\ v \cdot n \end{cases}$$

on
$$\partial K^+ \cap \partial K^-$$

on $\partial \Omega$
on $\partial K^+ \cap \partial K^-$
on $\partial \Omega$

Average Operator:

$$\{w\} = \begin{cases} \frac{1}{2}(w|_{K^+} + w|_{K^-}) & \text{on } \partial K^+ \cap \partial K^- \\ w & \text{on } \partial \Omega \\ \frac{1}{2}(v|_{K^+} + v|_{K^-}) & \text{on } \partial K^+ \cap \partial K^- \\ v & \text{on } \partial \Omega \end{cases}$$

Introduction	Linear Hyperbolic System	Steady-State Problems	HDG 0000000 0	Su 00
DG for ODE				

ODE^2

Equation

$$\frac{d}{dt}u(t) = f(t), \quad t \in (0,T), \quad u(0) = u_0.$$

• Partition of $(0,T) = \{t^n\}_{n=0}^N$, $I^n = (t^n, t^{n+1})$:

- Local Basis: $\{\phi_i^n\}_{i=0}^k$;(for example, $\phi_i^n(t) = P_j(\frac{2t-t^{n+1}-t^n}{t^{n+1}-t^n})$)
- weak form:

$$\int_{I^n} \frac{d}{dt} u_h(s) v(s) \, ds = \int_{I^n} f(s) v(s) \, ds,$$

or

$$-\int_{I^n} u_h(s) \frac{d}{dt} v(s) \, ds + u_h v|_{t^n}^{t^{n+1}} = \int_{I^n} f(s) v(s) \, ds$$

DG form:

$$-\int_{I^n} u_h(s) \frac{d}{dt} v(s) \, ds + \widehat{u_h} v|_{t^n}^{t^{n+1}} = \int_{I^n} f(s) v(s) \, ds,$$

²B. Cockburn, Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech. 83 **Discontinuous Galerkin Methods** M.-H. Chen

nmarv

Introduction	Linear Hyperbolic System	Steady-State Problems	HDG 0000000 0
DG for ODE			

Numerical Flux

- DG form: $-\int_{I^n} u_h(s) \frac{d}{dt} v(s) ds + \widehat{u_h} v|_{t^n}^{t^{n+1}} = \int_{I^n} f(s) v(s) ds$,
- Upwinding Numerical Flux $\widehat{u_h}(t^n) = \begin{cases} u_0, & \text{if } t^n = 0, \\ u_h(t^{n-}), & \text{otherwise.} \end{cases}$
- Assuming Numerical Solution: $u_h|_{I^n}(t) = \sum_{i=0}^k a_i^n \phi_i^n(t)$

= F

• Numerical Scheme: On I^n , for j = 0, ..., k,

$$\begin{split} &-\int_{I^n} \sum_{i=0}^k a_i^n \phi_i^n(s) \frac{d}{dt} \phi_j^n(s) \, ds + \sum_{i=0}^k a_i^n \phi_i^n \phi_j^n(t^{n+1}) - \sum_{i=0}^k a_i^{n-1} \phi_i^{n-1} \phi_j^n(t^n) \\ &= \int_{I^n} f(s) \phi_j^n(s) \, ds. \end{split}$$

• Matrix Equation:
$$M \begin{bmatrix} a_0^n \\ \vdots \\ a_k^n \end{bmatrix}$$

Summary

Introduction
000
000000

DG for ODE

Linear Hyperbolic System

Steady-State Problems

HDG 0000000 Summary

Properties of the DG methods

- Discontinuous from element to element.
- Locally conservative

$$\widehat{u_h}\big|_{t^n}^{t^{n+1}} = \int_{I^n} f(s) \, ds,$$

Relation between the residuals and jumps

$$-\int_{I^n} u_h(s) \frac{d}{dt} v(s) \, ds + \widehat{u_h} v|_{t^n}^{t^{n+1}} = \int_{I^n} f(s) v(s) \, ds,$$

Integration by parts,

$$\int_{I^n} \frac{d}{dt} u_h(s) v(s) \, ds + (\widehat{u_h} - u_h) v|_{t^n}^{t^{n+1}} = \int_{I^n} f(s) v(s) \, ds,$$

Or,

$$\int_{I^n} R(s)v(s) \, ds = (u_h - \widehat{u_h})v|_{t^n}^{t^{n+1}}$$

Take v = 1,

$$\int_{I^n} R(s) \, ds = \llbracket u_h \rrbracket \left(t^n \right)$$

Introduction	Linear Hyperbolic System	Steady-State Problems	HDG 0000000 0	Summary 00
DG for ODE				
_				

Example

٩

$$\frac{d}{dt}u = e^t u(t), \quad t \in (0,2), \quad u(0) = 1.$$

dg_ode.zip

• Rate of Convergence and super-convergence (P³)

N	L^2 -error	order	L^{∞} node	order
2	0.50E+02	-	0.45E+02	-
4	0.66E+01	2.92	0.11E+01	5.33
8	0.63E-00	3.40	0.14E-01	6.34
16	0.44E-01	3.83	0.11E-03	6.93
32	0.28E-02	4.00	0.87E-06	7.01
64	0.17E-03	4.03	0.68E-09	7.02

troduction	

In

0000●0 DG for ODE Linear Hyperbolic System

Steady-State Problems

HDG 0000000 Summary

Numerical Solutions of P^3 (Left) and P^5 (Right)

(日)

臣

Introduction ○○○ ○○○○○●

Linear Hyperbolic System

Steady-State Problems

DG 0000000 Summary

DG for ODE

Relation between the residuals and jumps

$$\int_{t^n}^{t^{n+1}} R(s) \, ds = \llbracket u_h \rrbracket \left(t^n \right)$$

	Interval 1			Interval 2		
k	Error	$\llbracket u \rrbracket$	Ratio	Error	$\llbracket u \rrbracket$	Ratio
1	0.33E-01	0.19E+00	0.17	0.19E-00	0.11E+01	0.17
2	0.35E-02	0.26E-01	0.13	0.27E-01	0.20E-00	0.14
3	0.34E-03	0.31E-02	0.11	0.34E-02	0.30E-01	0.12
4	0.32E-04	0.33E-03	0.097	0.41E-03	0.40E-02	0.10
5	0.28E-05	0.32E-04	0.087	0.45E-04	0.50E-03	0.090
6	0.24E-06	0.30E-05	0.080	0.47E-05	0.57E-04	0.082
	Interval 3				Interval 4	
k	Error	$\llbracket u \rrbracket$	Ratio	Error	$\llbracket u \rrbracket$	Ratio
1	0.19E-00	0.11E+02	0.17	0.73E+02	0.96E+02	0.76
2	0.43E-01	0.30E+01	0.14	0.29E+02	0.17E+03	0.18
3	0.72E-02	0.60E-00	0.12	0.46E+01	0.37E+02	0.12
4	0.11E-03	0.11E-01	0.10	0.95E-00	0.87E+01	0.11
5	0.16E-04	0.17E-02	0.094	0.18E-00	0.18E+01	0.098
6	0.21E-05	0.25E-03	0.085	0.32E-01	0.36E-00	0.089
			-			

Linear Hyperbolic System

Steady-State Problems

HDG 0000000 Summary

Linear scalar equation

Advection Equation

• Equation ($\Omega \subset \mathbb{R}^d$)

$$\begin{split} u_t + \nabla \cdot (\mathbf{a} u) &= 0 \mathrm{in} \quad \Omega \times (0,T), \\ u(t=0) &= u_0, \mathrm{on} \quad \Omega. \end{split}$$

- Triangulation: T_h
- Local Space: V(K) for $K \in \mathcal{T}_h$
- weak form: For all $v \in V(K)$

$$\int_K (u_h)_t v\,dx + \int_K \nabla\cdot (\mathbf{a} u_h) v\,dA = 0,$$

or

$$\int_{K} (u_h)_t v \, dx - \int_{K} \mathbf{a} u_h \cdot \nabla v \, dx + \int_{\partial K} \mathbf{a} u_h \cdot \mathbf{n} v \, ds = 0,$$

• DG form:

$$\int_{K} (u_{h})_{t} v \, dx - \int_{K} \mathbf{a} u_{h} \cdot \nabla v \, dx + \int_{\partial K} \widehat{\mathbf{a} u_{h}} \cdot \mathbf{n} v \, ds = 0,$$

Linear Hyperbolic System ○●○○○○ ○○○○○○ Steady-State Problems

HDG 0000000 Summary

Linear scalar equation

Numerical Flux and Stability

$$u_t + \nabla \cdot (\mathbf{a}u) = 0,$$

Stability for the transport equation

$$\frac{1}{2} \int_{\mathbb{R}^d} u^2(x,T) \, dx + \frac{1}{2} \int_0^T \int_{\mathbb{R}^d} \nabla \cdot \mathbf{a}(x) u^2(x,t) \, dx \, dt = \frac{1}{2} \int_{\mathbb{R}^d} u_0^2(x) \, dx$$

Stable if $\nabla \cdot \mathbf{a} \ge 0$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

臣

Linear Hyperbolic System ○○●○○○ Steady-State Problems

DG Summary

Linear scalar equation

DG form

$$\int_{K} (u_h)_t v \, dx - \int_{K} \mathbf{a} u_h \cdot \nabla v \, dx + \int_{\partial K} \widehat{\mathbf{a} u_h} \cdot \mathbf{n} v \, ds = 0,$$

Stability for the DG methods (Take v = u_h)

$$\frac{1}{2} \int_{\mathbb{R}^d} u_h^2(x,T) \, dx + \frac{1}{2} \int_0^T \int_{\mathbb{R}^d} \nabla \cdot \mathbf{a}(x) u_h^2(x,t) \, dx \, dt + \int_0^T \Theta_h(t) \, dt = \frac{1}{2} \int_{\mathbb{R}^d} u_{h,0}^2(x) \, dx,$$

where

$$\begin{split} \Theta_h(t) &= \sum_{K \in \mathcal{T}_h} \left(\frac{1}{2} \int_K \nabla \cdot (\mathbf{a}(x) u_h^2)(x, t) \, dx \right) + \int_{\partial K} \widehat{\mathbf{a}u_h}(x, t) \cdot \mathbf{n}u_h(x, t) \, ds). \\ &= \sum_{K \in \mathcal{T}_h} \int_{\partial K} (\widehat{\mathbf{a}u_h} \cdot \mathbf{n}u_h(x, t) - \frac{1}{2} \mathbf{a}u_h^2 \cdot \mathbf{n}) \, ds . \\ &= \sum_{e \in \mathcal{E}_h} \int_e (\widehat{\mathbf{a}u_h} - \mathbf{a}\{u_h\}) \cdot \llbracket u_h \rrbracket \, ds . \end{split}$$

• Numerical Flux: ($\Theta_h(t) \ge 0$)

- General: $\widehat{\mathbf{a}u_h}(t_1^n) = \mathbf{a}\{u_h\} + C\llbracket u_h\rrbracket$
- Up-winding: $C = \frac{1}{2} |\mathbf{a} \cdot \mathbf{n}| Id \Rightarrow \widehat{\mathbf{a}u_h}(t^n) = \mathbf{a} \lim_{\epsilon \downarrow 0} u_h(x \epsilon \mathbf{a})$
- Lax-Friedrichs: $C = \frac{1}{2} |\mathbf{a}| I d \Rightarrow \widehat{\mathbf{a}u_h}(t^n) = \mathbf{a} \{u_h\} + \frac{1}{2} |\mathbf{a}| [\![u_h]\!]$

Introduction 000 000000	Linear Hyperbolic System	Steady-State Problems	HDG 0000000 0	Summa 00
Linear scalar equation				

DG Scheme

• DG form

$$\int_{K} (u_{h})_{t} v \, dx - \int_{K} \mathbf{a} u_{h} \cdot \nabla v \, dx + \int_{\partial K} \widehat{\mathbf{a} u_{h}} \cdot \mathbf{n} v \, ds = 0,$$

$$\widehat{\mathbf{a} u_{h}}(t^{n}) = \mathbf{a} \{u_{h}\} + C \llbracket u_{h} \rrbracket$$

- Assuming Numerical Solution: $u_h|_K(t,x) = a_i(t)\phi_i(x)$
- Numerical Scheme: On K, for j = 0, ..., k,

$$\int_{K} (a_i)_t \phi_i(x) \phi_j(x) \, dx - \int_{K} \mathbf{a} a_i \phi_i(x) \cdot \nabla \phi_j(x) \, dx + \int_{\partial K} \widehat{\mathbf{a} u_h} \cdot \mathbf{n} \phi_j(x) \, ds = 0,$$

ODE

$$M\frac{d}{dt}U = NU$$

크

ry

Introduction	Linear Hyperbolic System oooo●o ooooooo	Steady-State Problems
l inear scalar equa	ation	

1DG 20000000 Summary

Example

$$u_t + u_x = 0$$
 in $(0, T = 1) \times (0, 1)$
 $u(t = 0) = \sin 2\pi x$ on $(0, 1)$

Rate of Convergence (P^4 with RK 5)

N	L^2 -error	order
10	0.17E-05	-
20	0.52E-07	5.01
40	0.16E-08	5.01
80	0.51E-10	5.00
160	0.16E-11	5.00

・ロ・ ・ 四・ ・ 回・ ・ 日・

æ.

Linear Hyperbolic System ○○○○○● ○○○○○○

Linear scalar equation

Steady-State Problems

IDG २०००००० Summary

Procedures to implement the RK-DG methods

Conservation Form:

$$u_t + \nabla \cdot \mathbf{f}(u) = 0,$$

DG space discretization

$$\int_{K} (u_h)_t v_h \, dx - \int_{K} \mathbf{f}(u_h) \cdot \nabla v_h \, dx + \int_{\partial K} \widehat{\mathbf{f}(u_h)} \cdot n_K v_h \, ds = 0.$$

Here, the proper definition of $\widehat{\mathbf{f}(u_h)}$ is essential for the stability and convergence of the method.

• RK time discretizatin:

$$\frac{d}{dt}u_h = L(u_h)$$

ntroduction	Linear Hyperbolic System ○○○○○○ ●○○○○○○	Steady-State Problems	HDG 0000000 0	Summary
inear System				

Wave Equation

Equation

$$u_{tt} - c^2 \triangle u = 0$$
in $\mathbb{R}^d \times (0, T)$.

First-order system

$$U_t + \nabla \cdot F(U) = 0$$
, in $\mathbb{R}^d \times (0, T)$

where

$$U = \begin{pmatrix} q_1 \\ \vdots \\ q_d \\ u \end{pmatrix}, \quad F(U) = -c \begin{pmatrix} u & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & u \\ q_1 & \dots & q_d \end{pmatrix}$$

- Triangulation: T_h
- Local Space: $U(K) = P^k(K) \times \ldots \times P^k(K)$ for $K \in \mathcal{T}_h$
- DG form: For all $V \in U(K)$

$$\int_{K} (U_{hi})_{t} V_{i} - \int_{K} F_{ij}(U_{h}) V_{i,j} + \int_{\partial K} \widehat{F_{ij}} \mathbf{n}_{j} V_{i} \, dx = 0,$$

크

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

ntroduction	Linear Hyperbolic System ○○○○○○ ●○○○○○○	Steady-State Problems	HDG 0000000 0	Summary
inear System				

Wave Equation

Equation

$$u_{tt} - c^2 \triangle u = 0$$
in $\mathbb{R}^d \times (0, T)$.

First-order system

$$U_t + \nabla \cdot F(U) = 0$$
, in $\mathbb{R}^d \times (0, T)$

where

$$U = \begin{pmatrix} q_1 \\ \vdots \\ q_d \\ u \end{pmatrix}, \quad F(U) = -c \begin{pmatrix} u & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & u \\ q_1 & \dots & q_d \end{pmatrix}$$

- Triangulation: T_h
- Local Space: $U(K) = P^k(K) \times \ldots \times P^k(K)$ for $K \in \mathcal{T}_h$
- DG form: For all $V \in U(K)$

$$\int_{K} (U_{hi})_{t} V_{i} - \int_{K} F_{ij}(U_{h}) V_{i,j} + \int_{\partial K} \widehat{F_{ij}} \mathbf{n}_{j} V_{i} \, dx = 0,$$

크

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Linear Hyperbolic System

Steady-State Problems

HDG 0000000 Summary

Linear System

Numerical Flux and Stability

• DG form: for all $V \in U(K)$

$$\int_{K} (U_{hi})_{t} V_{i} - \int_{K} F_{ij}(U_{h}) V_{i,j} + \int_{\partial K} \widehat{F_{ij}} \mathbf{n}_{j} V_{i} \, dx = 0,$$

• Stability for the DG methods (Take $V = U_h$)

$$\frac{1}{2}\int_{\mathbb{R}^d} U_h^2(x,T)\,dx + \frac{1}{2}\int_0^T \Theta_h(t)\,dt = \frac{1}{2}\int_{\mathbb{R}^d} U_h^2(x,0)\,dx,$$

where

$$\Theta_h(t) = \sum_{e \in \mathcal{E}_h} \int_e (\widehat{F_{ij}} - \{F_{ij}\}) \cdot \llbracket U_h, i \rrbracket \ dx.$$

Numerical Flux

$$\widehat{F_{ij}} = \{F_{ij}\} + C_{ijkl} \left[\!\left[U_{hk}\right]\!\right]_l$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Linear Hyperbolic System ○○○○○ ○○●○○○○ Steady-State Problems

HDG 0000000 Summary

Examples of the DG methods

Numerical Flux

 $\widehat{F_{ij}} = \{F_{ij}\} + C_{ijkl} \, \llbracket U_{hk} \rrbracket_l$

• Up-winding:

$$\widehat{F_{ij}} = \{F_{ij}\} + \frac{|c|}{2} \left[\!\left[q\right]\!\right] \delta_{ij} + \frac{|c|}{2} \left[\!\left[u\right]\!\right]_j \delta_{i(d+1)}$$

Lax-Friedrichs:

$$\widehat{F_{ij}} = \{F_{ij}\} + \frac{|c|}{2} \left[\!\left[q_i\right]\!\right]_j \delta_{ij} + \frac{|c|}{2} \left[\!\left[u\right]\!\right]_j \delta_{i(d+1)}$$

• Generalization of the Up-winding flux :

$$\widehat{F_{ij}} = \{F_{ij}\} + (C_{22} \llbracket q \rrbracket - C_{12} \cdot \llbracket u \rrbracket) \delta_{ij} + (C_{12} \llbracket q \rrbracket + C_{11} \cdot \llbracket u \rrbracket) \delta_{ij}$$

・ロ・ ・ 四・ ・ 回・ ・ 日・

э

Introduction 000 000000	Linear Hyperbolic System ○○○○○ ○○○●○○○	Steady-State Problems	HDG 0000000 0	Summary
Linear System				

RK-DG Scheme

- DG form $\int_{K} (U_{hi})_{t} V_{i} - \int_{K} F_{ij}(U_{h}) V_{i,j} + \int_{\partial K} \widehat{F_{ij}} \mathbf{n}_{j} V_{i} dx = 0,$ $\widehat{F_{ij}} = \{F_{ij}\} + C_{ijkl} \llbracket U_{hk} \rrbracket_{l}$
- Numerical Solution: $U_h|_K(t,x) = a_i(t)\phi_i(x)$
- Numerical Scheme: On K, for j = 0, ..., k,

$$\int_{K} (a_i)_t \phi_i(x) \cdot \phi_j(x) \, dx - \int_{K} F(a_i \phi_i(x)) \cdot \nabla \phi_j(x) \, dx + \int_{\partial K} \widehat{F} \cdot \mathbf{n} \phi_j(x) \, ds = 0,$$

ODE

$$M\frac{d}{dt}U = NU$$

Introduction	
000	

Steady-State Problems

IDG 2000000 Summary

Linear System

Numerical Experiments

1D Test: Wave equation with sound speed $c(x) = \frac{1}{\sqrt{\mu\epsilon}}$

$$\partial_t u - c(x)^2 \partial_x v = 0, \quad \text{in} (0, T) \times (-2, 2)$$
$$\partial_t v - \partial_x u = 0, \quad \text{in} (0, T) \times (-2, 2)$$
$$c(x) = \begin{cases} 2 & \text{if } x \in (-1, 1) \\ 1 & \text{otherwise} \end{cases}$$

Initial conditions:

$$\begin{split} &u(x,t=0)=\phi(x), \quad x\in (-2,2) \\ &v(x,t=0)=-\phi(x), \quad x\in (-2,2) \end{split}$$

Boundary Condition: (Transparent BC)

$$u + v = 0$$
 at $x = 2$
 $u - v = 2\phi(x - t)$ at $x = -2$

(Chen, Cockburn, Reitich, J. Sci. Comp. 2005.)

Linear Hyperbolic System

Steady-State Problems

HDG ______ Summary

Linear System

Profile

23/47

Linear Hyperbolic System

Steady-State Problems

IDG

Summary

Linear System

Rate of Convergence

h	L^{∞} -error	order	L^2 -error	order	L1-error	order
0.1250	0.64E-01	0.00	0.13E-01	0.00	0.25E-01	0.00
0.0625	0.17E-02	5.25	0.34E-03	5.28	0.63E-03	5.32
0.0312	0.60E-04	4.81	0.52E-05	6.01	0.86E-05	6.19
0.0156	0.40E-05	3.90	0.26E-06	4.31	0.34E-06	4.68
0.0078	0.25E-06	3.97	0.16E-07	4.00	0.21E-07	4.02
0.0039	0.16E-07	3.99	0.10E-08	4.00	0.13E-08	4.00

 P^3 -elements and SSP-RK4 scheme at T = 1.5

h	L^{∞} -error	order	L^2 -error	order	L^1 -error	order
0.1250	0.92E-02	0.00	0.19E-02	0.00	0.38E-02	0.00
0.0625	0.12E-03	6.26	0.12E-04	7.40	0.23E-04	7.40
0.0312	0.37E-05	5.04	0.22E-06	5.70	0.26E-06	6.43
0.0156	0.12E-06	4.97	0.70E-08	5.00	0.76E-08	5.11
0.0078	0.37E-08	5.00	0.22E-09	5.00	0.24E-09	5.00
0.0039	0.12E-09	4.99	0.68E-11	5.00	0.74E-11	5.00

 P^4 -elements, SSP-RK5 scheme at T = 1.5.

・ロ・・ 日本・ ・ 日本・

Introduction
000000
Elliptic Problems

Steady-State Problems

HDG 0000000 Summary

Elliptic Equation

Consider a second-order elliptic model problem:

$$\begin{aligned} -\Delta u &= f & \text{in } \Omega, \\ u &= u_D & \text{on } \partial \Omega. \end{aligned}$$

Introduce an auxiliary variable q and rewrite the equation as

$$q = \nabla u \quad \text{in } \Omega,$$

$$-\nabla \cdot q = f \quad \text{in } \Omega,$$

$$u = u_D \quad \text{on } \partial \Omega.$$

Introduction	Linear Hyperbolic System	Steady-State Problems o●ooooooo oooo	HDG 000
Elliptic Problems			

Definition

For each element K of the mesh T_h of the domain Ω , we define where n_K is the outward unit normal to K,

$$(u,v)_{K} = \int_{K} uv \, dx, \qquad (1)$$

$$\langle w,v \rangle_{\partial K} = \int_{\partial K} wv \, ds. \qquad (2)$$

Summary

Introduction 000 000000	Linear Hyperbolic System	Steady-State Problems ○○●○○○○○○	HDG 0000000 0	Summary 00
Elliptic Problems				

Weak form and DG method

The approximate solution (q_h, u_h) on the element K is taken in the space $V(K) \times W(K)$ and is defined as the solution, for all $(v, w) \in V(K) \times W(K)$, of the equations

$$\begin{aligned} (\boldsymbol{q}_h, \boldsymbol{v})_K + (u_h, \nabla \cdot \boldsymbol{v})_K - \langle \widehat{u}_h, \boldsymbol{n}_K \cdot \boldsymbol{v} \rangle_{\partial K} &= 0, \\ (\boldsymbol{q}_h, \nabla w)_K - \langle \widehat{\boldsymbol{q}}_h \cdot \boldsymbol{n}_K, w \rangle_{\partial K} &= (f, w)_K, \end{aligned}$$

with Dirichlet boundary condition

$$\widehat{u}_h = u_D \quad \text{on } \partial K \cap \partial \Omega$$

All the DG methods are generated by choosing the local spaces $V(K) \times W(K)$ and the numerical traces $\hat{q}_h \cdot n_K$ and \hat{u}_h .

Introduction 000 000000	Linear Hyperbolic System	Steady-State Problems ○○○●○○○○○ ○○○○	HDG 0000000 0	Summary 00
Elliptic Problems				

Numerical traces

The definition of the numerical traces \hat{q}_h and \hat{u}_h strongly influences the properties of the corresponding DG method. In this context, we also require that the numerical traces be linear functions of the traces of $q_h \cdot n_K$ and u_h which are consistent and single valued. Example (Cockburn and Shu 1998)

$$\widehat{\boldsymbol{q}}_h := \{\boldsymbol{q}_h\} - C_{qq} \left[\!\left[\boldsymbol{q}_h\right]\!\right] - C_{qu} \left[\!\left[\boldsymbol{u}_h\right]\!\right], \\ \widehat{\boldsymbol{u}}_h := \{\boldsymbol{u}_h\} - C_{uu} \left[\!\left[\boldsymbol{u}_h\right]\!\right] - \frac{C_{uq} \left[\!\left[\boldsymbol{q}_h\right]\!\right]}{\left[\!\left[\boldsymbol{q}_h\right]\!\right]}.$$

Let us consider DG methods having a numerical trace \hat{u}_h independent of q_h . This allows for the easy elimination of the variable q_h , which can now be expressed in terms of u_h in an elementwise manner, and results in the so-called primal formulation of the method.

Introduction	Linear Hyperbolic System	Steady-State Problems
000 000000	000000 0000000	00000000 0000
Elliptic Problems		

HDG

Summary

Mixed Form of LDG Methods Find $(q_h, u_h) \in \mathcal{M}_h \times \mathcal{V}_h$ such that

$$a_h(\boldsymbol{q}_h, \boldsymbol{v}) + b_h(u_h, \boldsymbol{v}) = G_h(\boldsymbol{v}),$$

$$-b_h(w, \boldsymbol{q}_h) + c_h(u_h, w) = F_h(w),$$

• The corresponding linear system has the form

$$\begin{bmatrix} A & B \\ -B^t & C \end{bmatrix} \begin{bmatrix} Q \\ U \end{bmatrix} = \begin{bmatrix} G \\ F \end{bmatrix}$$

- A and C are symmetric
- *B* is antisymmetric.

Introduction

Elliptic Problems

Steady-State Problems

HDG

Summary

 $\partial \Omega$

Numerical Result: Elliptic Interface Problem

Model Problem

$$\begin{aligned} -\nabla \cdot \beta \nabla u &= f \text{ in } \Omega_1 \cup \\ u &= g \text{ on } \partial \Omega, \\ u|_{\Omega_1} - u|_{\Omega_2} &= a \text{ on } \Gamma_I, \\ ((\beta \nabla u)|_{\Omega_1} - (\beta \nabla u)|_{\Omega_2}) \cdot \boldsymbol{n}_e &= b \text{ on } \Gamma_I, \end{aligned}$$

where f, g, a, and b are functions of x and y, n_e is the outward unit normal vector to $\partial \Omega_1$, and β is a positive finite constant function on Ω_1 and Ω_2 , separately.

(Chen, Wu, TJM2016)

Introduction	Linear Hyperbolic System	Steady-State Problems oooooooooo oooo	HDG 0000000 0
Elliptic Problems			

The Model Problem and LDG method

We assume that $\Omega = [-1,1] \times [0,3]$ is the entire domain and Ω_1 is the open interior domain embedded in Ω with a complicated interface

$$\Gamma_I(\theta) = \begin{pmatrix} 0.6\cos\theta - 0.3\cos3\theta\\ 1.5 + 0.7\sin\theta - 0.07\sin3\theta + 0.2\sin7\theta \end{pmatrix}$$

for $\theta \in [0, 2\pi]$. The exterior domain is $\Omega_2 = \Omega \setminus \Omega_1$.

Figure: Domain(left) and numerical solution (right) of test problem 2

Summarv

Introduction
000000
Elliptic Problems

Steady-State Problems

H**DG**

Summary

The Model Problem and LDG method

Table: *p*-convergence of u and q (25 elements) for test problem 2.

Basis function	DoF	L^2 -error of u	L^2 -error of $oldsymbol{q}$
Q^1	300	6.615e - 01	2.641e + 01
Q^2	675	1.599e - 01	1.129e + 01
Q^3	1200	4.450e - 02	4.346e + 00
Q^4	1875	6.711e - 03	9.273e - 01
Q^5	2700	2.652e - 03	4.010e - 01
Q^6	3675	3.512e - 04	7.475e - 02
Q^7	4800	1.095e - 04	2.204e - 02
Q^8	6075	2.148e - 05	5.815e - 03
Q^9	7500	3.297e - 06	7.967e - 04
Q^{10}	9075	9.766e - 07	3.258e - 04
Q^{11}	10800	8.334e - 08	2.376e - 05

M.-H. Chen

Discontinuous Galerkin Methods

Ξ.

Introduction
000000

Steady-State Problems

HDG

Summary

Elliptic Problems

p-convergence and Domain

Figure: *p*-convergence of u and q on a 25-element mesh (left). Corresponding curved-edge quadrilateral mesh with 25 elements (right).

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Linear Hyperbolic System	Steady-State Problems ●○○○○○○○	HDG 0000000 0	Summary 00
Fenics and Colab				

Fenics Project

- The FEniCS Project is a collection of free and open-source software components with the common goal to enable automated solution of differential equations.³
- The components provide scientific computing tools for working with computational meshes, finite-element variational formulations of ordinary and partial differential equations, and numerical linear algebra.
- FEniCS enables users to quickly translate scientific models into efficient finite element code. With the high-level Python and C++ interfaces to FEniCS, it is easy to get started.⁴
- FEniCS runs on a multitude of platforms.

▶ ★ E ▶ ★ E ▶ E

³https://en.wikipedia.org/wiki/FEniCS Project ⁴https://fenicsproject.org/

Introduction	
000000	

Steady-State Problems

DG 000000 Summary

Fenics and Colab

- Solving PDEs in Python: The FEniCS Tutorial I (Free)
- Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book (Free PDF)
- Introduction to Automated Modeling with FEniCS by Ridgway Scott
- FENICS Examples (John Burkardt)

Introduction	Linear Hyperbolic System	Steady-State Problems	HDG	Summary
Fenics and Colab			0	
Poisson pro	blem (CG): $\int_\Omega abla u \cdot abla$	$\nabla v dx = \int_{\Omega} f v dx$		
%matplotl	lib inline			
from feni	cs import *			
mesh = Ur	nitSquareMesh (8	5, 8)		
V = Funct	ionSpace (mesh	, "Lagrange", 1)	
u0 = Expr	ression ("1+x[0]	* x[0]+2*x[1]*x[1]", degr	ee =2)
bc = Dirie	chletBC (V, u0	, "on_boundary∟	.")	
f = Const	tant (-6.0)			
u = Trial	Function (V)			
v = TestF	Function (V)			
a = inner	(grad (u), gr	ad (v))*dx		
L = f * v * d	lx			
u = Funct	tion (V)			
solve (a	== L, u, bc)			
plot (u)				

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Introduction
000000

Fenics and Colab

Linear Hyperbolic System

Steady-State Problems

DG 000000 Summary

Google Colaboratory (Colab)

What is Colaboratory?

Colaboratory, or "Colab" for short, allows you to write and execute Python in your browser, with

- Zero configuration required
- Free access to GPUs
- Easy sharing

Some sample code:

- MyPoissonCG link: CG method for Poisson problem.
- MyPoissonDG link: DG method for Poisson problem.

Reference: https://github.com/leodenale/FenicsOnColab

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

э

Linear Hyperbolic System

Steady-State Problems

HDG •000000

Summary

Elliptic Model Problem

Motivation for HDG methods

However, the DG methods (for second-order elliptic equations) have been criticized because:

• For the same mesh and the same polynomial degree, the number of globally coupled degrees of freedom of the DG methods is much bigger than those of the CG method. Moreover, the orders of convergence of both the vector and scalar variables are also the same.

Introduction
000000

Steady-State Problems

HDG ○●○○○○○ Summary

Elliptic Model Problem

Elliptic Equation

Consider a second-order elliptic model problem:

$$\begin{aligned} xq +
abla u &= 0 \quad ext{in } \Omega, \\
abla \cdot q &= f \quad ext{in } \Omega, \\
\hat{u} &= u_D \quad ext{on } \partial\Omega. \end{aligned}$$

Here c is a matrix-valued function which is symmetric and uniformly positive definite on Ω

Introduction 000 000000	Linear Hyperbolic System	Steady-State Problems	HDG ○○●○○○○ ○	Summary
Elliptic Model Problem				

The HDG methods⁵.

Rewrite the equations. If for each $K \in \Omega_h$, we assume that we know the trace \hat{u} on ∂K , we can obtain (q, u) inside K as the solution of Consider a second-order elliptic model problem:

$$cq + \nabla u = 0 \quad \text{in } K,$$

$$\nabla \cdot q = f \quad \text{in } K,$$

$$u = \hat{u} \quad \text{on } \partial K.$$

Then \hat{u} can be determined as the solution, on each edge $F \in \mathcal{E}_h$, of

$$\begin{bmatrix} \widehat{q} \cdot n \end{bmatrix} = 0 \quad \text{if } F \in \mathcal{E}_h^o, \text{ (interior edges)} \\ \widehat{u} = u_D \quad \text{if } F \in \mathcal{E}_h^o, \text{ (exterior edges)} \end{bmatrix}$$

Note: $[\![\widehat{q} \cdot n]\!] := \widehat{q}^+ \cdot n^+ + \widehat{q}^- \cdot n^-$. ⁵*The Hybridizable Discontinuous Galerkin Methods*, Proceedings of the International Congress of Mathematicians 2010, pp.2749-2775

Introduction 000 000000	Linear Hyperbolic System	Steady-State Problems	HDG 000●000 0	Summa 00
Elliptic Model Problem				

The local problems: A weak formulation on each element.

On each element $K \in \Omega_h$, we define $(q_h, u_h) \in V(K) \times W(K)$ in terms of (\widehat{u}_h, f) such that

$$\begin{aligned} (cq_h, v)_K - (u_h, \nabla \cdot v)_K + \langle \widehat{u}_h, v \cdot n \rangle_{\partial K} &= 0, \\ -(q_h, \nabla w)_K + \langle \widehat{q}_h \cdot n, w \rangle_{\partial K} &= (f, w)_K, \end{aligned}$$

for all $(v, w) \in V(K) \times W(K)$, where

$$\widehat{q}_h \cdot n = q_h \cdot n + \tau (u_h - \widehat{u}_h) \quad \text{on } \partial K.$$

Note: $(u, w)_K := \int_K uw \, dx$, $\langle w, v \rangle_{\partial K} = \int_{\partial K} wv \, ds$

(ロ) (部) (E) (E) (E)

Introduction
000

Elliptic Model Problem

Steady-State Problems

HDG Summary

The global problem: The weak formulation for \hat{u}_h .

For each face $F \in \mathcal{E}_h^o$, we take $\widehat{u}_h|_F$ in the space M(F). We determine \widehat{u}_h by requiring that,

$$\begin{aligned} \langle \nu, \llbracket \widehat{q}_h \rrbracket \rangle_F &= 0, \forall \nu \in M(F) \quad \text{if } F \in \mathcal{E}_h^o, \\ \widehat{u}_h &= u_D \quad \text{if } F \in \mathcal{E}_h^\partial. \end{aligned}$$

All the HDG methods are generated by choosing the local spaces V(K), W(K), M(F) and the stabilization function τ .

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Introduction 000 000000	Linear Hyperbolic System	Steady-State Problems	HDG 00000●0 0	Summary
Elliptic Model Problem				

- By solving the local problems, we express q_h , u_h and \hat{q}_h in terms of \hat{u}_h and f. With these expressions, we construct the matrix equation associated to the global problem.
- After solving it, we can insert the actual values of
 û_h in the expressions we had obtained for *q_h*, *u_h* and *q_h*. Next, we describe this procedure more precisely.

Linear Hyperbolic System

Steady-State Problems

HDG _____ Summary

Elliptic Model Problem

The main features of the HDG methods.

- The HDG methods are obtained by discretizing characterizations of the exact solution written in terms of many local problems, one for each element of the mesh Ω_h , with suitably chosen data, and in terms of a single global problem that actually determines them.
- This permits an efficiently implementation since they inherit the above-mentioned structure of the exact solution. This is what renders them efficiently implementable, especially within the framework of hp-adaptive methods, as is typical of DG methods.

Introductior	۱
000	

Matlab tools for HDG - HDG3D

HDG3D

- Matlab implementation of the Hybridizable Discontinuous Galerkin method on general tetrahedrizations of polyhedra in three dimensional space.
- Developed by group Team Pancho at the Department of Mathematical Sciences at the University of Delaware.
- Project website: https://team-pancho.github.io/HDG3D/

Remark:

- Move "A_simple_example.m" up one level.
- Move the directory "meshes" up one level.

Linear Hyperbolic System

Steady-State Problems

DG 000000 Summary

Summary and Reference

Main features of the DG methods:

- High-order accurate.
- Locally Conservative.
- Adaptivity
- High parallelizability,
- The HDG methods are obtained by constructing discrete versions (based on discontinuous Galerkin methods) of the above characterization of the exact solution.
- In this way, the globally coupled degrees of freedom will be those of the corresponding global formulations.

Introduction
000

Steady-State Problems

IDG 2000000 Summary 0

Reference

- B. Cockburn, G. Karniadakis, C.-W. Shu, The development of Discontinuous Galerkin methods, in Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Sicence and Engineering, Volume 11, Springer, 2000.
- B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), pp. 173-261.
- D. Arnold, F. Brezzi, B. Cockburn and D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SINUM 39 (2002), pp. 1749-1779.
- B. Cockburn, Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech. 83 (2003), pp. 731-754.
- B. Cockburn, Discontinuous Galerkin methods for computational fluid dynamics, Encyclopedia of Computational Mechanics Second Edition (2018): 1-63.