Numerical Partial Differential Equations II
 Discontinuous Galerkin Methods
 Homework 3

(Due: Jun 12, 2005)
Consider the 1-D second-order elliptic problem,

$$
\frac{d^{2}}{d x^{2}} u=f(x), \quad x \in(0,2)
$$

with the boundary condition,

$$
u(0)=u_{0}, \quad u(2)=u_{2}
$$

Write a code to solve the problem using Discontinuous Galerkin methdos with Legendre polynomials as basis functios.

1. Solve the problem with various grid sizes and

$$
f(x)=x, \quad u_{0}=0, \quad u_{0}=2
$$

- Compute the L^{2}-errors of the numerical solutions. What is the rate of convergence?
- Choose spaces violating the compatibility condition. Is the problem solvable? Why?
- Discuss the results.

2. (Interface Problem) Now, consider the elliptic with a discontinuous f,

$$
f(x)= \begin{cases}0 & 0 \leq x<1 \\ 1 & 1 \leq x \leq 2\end{cases}
$$

boundary conditions,

$$
u_{0}=0, \quad u_{0}=2
$$

and jump conditions

$$
u\left(1^{+}\right)-u\left(1^{-}\right)=\frac{1}{2}, \quad u_{x}\left(1^{+}\right)-u_{x}\left(1^{-}\right)=\frac{1}{2}
$$

Solve the problem with various grid sizes.

- Compute the L^{2}-errors of the numerical solutions. What is the rate of convergence?
- Change $f(x)$ to

$$
f(x)= \begin{cases}0 & 0 \leq x<1.1 \\ 1 & 1.1 \leq x \leq 2\end{cases}
$$

(without jump conditions) what is the rate of convergence?

- Discuss the results.

