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6.1 Introduction

Definition

Let S =
∞∑

k=1
ak be an infinite series whose terms ak belong

to R

(i)

The partial sums of S of order n are the numbers defined,
for each n ∈ N, by

Sn :=
n∑

k=1

ak .
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Definition
(ii)

S is said to converge if and only if its sequence of partial
sums {sn} converges to some s ∈ R as n→∞; i.e., for
every ε > 0 there is an N ∈ N such that n ≥ N implies that
|sn − s| < ε. In this case we shall write

∞∑
k=1

ak = s

and called s the sum, or value, of the series
∑∞

k=1 ak
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Definition
(iii)

S is said to diverge if and only if its sequence of partial
sums {sn} does not converge as n→∞. When sn

diverges to +∞ as n→∞, we shall also write

∞∑
k=1

ak =∞.
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Example: [Harmonic Series]

Prove that the sequence
1
k

converges but the series
∞∑

k=1

1
k

diverges to +∞.
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Proof:

The sequence 1/k converges to zero (by Example 2.2).
On the other hand, by the Comparison Theorem for
Integrals,

n∑
k=1

1
k
≥

n∑
k=1

∫ k+1

k

1
x

dx =

∫ n+1

1

1
x

dx = log(n + 1).

We conclude that sn →∞ as n→∞. 2
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Theorem (Divergence Test)
Let {ak}k∈N be a sequence of real numbers. If ak does not

converge to zero, then the series
∞∑

k=1
ak diverges.
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Proof:

Suppose to the contrary that
∞∑

k=1
ak converges to some

s ∈ R. By definition, the sequence of partial sums

sn :=
n∑

k=1
ak converges to s as n→∞. Therefore,

ak = sk − sk−1 → s − s = 0 as k →∞, a contradiction. 2
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Theorem (Telescopic Test)
If {ak} is a convergent real sequence, then

∞∑
k=1

(ak − ak+1) = a1 − lim
k→∞

ak .
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Proof:

By telescoping, we have

sn :=
n∑

k=1

(ak − ak+1) = a1 − an+1.

Hence sn → a1 − lim
k→∞

ak as n→∞. 2
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Theorem (Geometric Series)

The series
∞∑

k=1
xk converges if and only if |x | < 1, in which

case
∞∑

k=1

xk =
x

1− x
.

(see also Exercise 1.)
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Proof:

If |x | ≥ 1, then
∞∑

k=1
xk diverges by the Divergence Test. If

|x | < 1, then set sn =
n∑

k=1
xk and observe by the

telescoping that

(1− x)Sn = (1− x)(x + x2 + · · ·+ xn)
= x + x2 + · · ·+ xn − x2 − x3 − · · · − xn+1

= x − xn+1.
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Hence,

sn =
x

1− x
− xn+1

1− x
for all n ∈ N. Since xn+1 → 0 as n→∞ for all |x | < 1 (see
Example 2.20), we conclude that sn →

x
(1− x)

as n→∞.
2
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Theorem (Cauchy Criterion)
Let {ak} be a real sequence. Then the infinite series
∞∑

k=1
ak converges if and only if for every ε > 0 there is an

N ∈ N such that

m > n ≥ N imply

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

WEN-CHING LIEN Advanced Calculus (I)



Theorem (Cauchy Criterion)
Let {ak} be a real sequence. Then the infinite series
∞∑

k=1
ak converges if and only if for every ε > 0 there is an

N ∈ N such that

m > n ≥ N imply

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

WEN-CHING LIEN Advanced Calculus (I)



Proof:

Let sn represent the sequence of partial sums of
∞∑

k=1
ak

and set s0 = 0. By Cauchy’s Theorem (Theorem 2.29), sn

converges if and only if given ε > 0 there is an N ∈ N such
that m,n ≥ N imply |sm − sn−1| < ε. Since

sm − sn−1 =
m∑

k=n

ak

for all integers m > n ≥ 1, the proof is complete. 2
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Theorem

Let {ak} and {bk} be real sequences. If
∞∑

k=1
ak and

∞∑
k=1

bk

are convergent series, then

∞∑
k=1

(ak + bk) =
∞∑

k=1

ak +
∞∑

k=1

bk

and
∞∑

k=1

(αak) = α
∞∑

k=1

ak

for any α ∈ R.
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Exmple:

(1)
∞∑

k=1

1
k(k + 1)

(2)
∞∑

k=1

(
1− 1

k

)k
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Thank you.
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