Advanced Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

WEN-CHING LIEN Advanced Calculus (I)

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Definition

Let f_k be a sequence of real functions defined on some set E and set

$$s_n(x) := \sum_{k=1}^n f_k(x), \quad x \in E, \quad n \in \mathbb{N}.$$

(i)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converges pointwise* on E if and only if the sequence $s_n(x)$ converges pointwise on E as $n \to \infty$.

Definition

Let f_k be a sequence of real functions defined on some set E and set

$$s_n(x) := \sum_{k=1}^n f_k(x), \quad x \in E, \ n \in \mathbb{N}.$$

(I) The series $\sum_{k=1}^{\infty} f_k$ is said to *converges pointwise* on E if and only if the sequence $s_n(x)$ converges pointwise on E as $n \to \infty$.

Definition

Let f_k be a sequence of real functions defined on some set E and set

$$\mathbf{s}_n(\mathbf{x}) := \sum_{k=1}^n f_k(\mathbf{x}), \quad \mathbf{x} \in \mathbf{E}, \ n \in \mathbf{N}.$$

(i)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converges pointwise* on E if and only if the sequence $s_n(x)$ converges pointwise on E as $n \to \infty$.

Definition

Let f_k be a sequence of real functions defined on some set E and set

$$s_n(x) := \sum_{k=1}^n f_k(x), \quad x \in E, \quad n \in \mathbb{N}.$$

(i)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converges pointwise* on E if and only if the sequence $s_n(x)$ converges pointwise on E as $n \to \infty$.

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge uniformly* on E if and only if the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$.

(iii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge absolutely (pointwise)* on E if and only if $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$.

・ロ・ ・ 四・ ・ 回・ ・ 日・

(ii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge uniformly* on E if and only if the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$.

(iii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge absolutely (pointwise)* on E if and only if $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$.

(ii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge uniformly* on E if and only if the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$.

(iii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge absolutely (pointwise)* on E if and only if $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$.

(ii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge uniformly* on E if and only if the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$.

(iii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge absolutely (pointwise)* on E if and only if $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$.

(ii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge uniformly* on E if and only if the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$.

(iii)

The series $\sum_{k=1}^{\infty} f_k$ is said to *converge absolutely (pointwise)* on E if and only if $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$.

Let *E* be a nonempty subset of **R** and let $\{f_k\}$ be a sequence of real functions defined on *E*. (*i*) Suppose that $x_0 \in E$ and that each f_k is continuous at $x_0 \in E$. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on *E*, then *f* is continuous at $x_0 \in E$.

WEN-CHING LIEN Advanced Calculus (I)

・ロ・ ・ 四・ ・ 回・ ・ 日・

E

Let *E* be a nonempty subset of **R** and let $\{f_k\}$ be a sequence of real functions defined on *E*.

Suppose that $x_0 \in E$ and that each f_k is continuous at $x_0 \in E$. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on E, then f is continuous at $x_0 \in E$.

Let *E* be a nonempty subset of **R** and let $\{f_k\}$ be a sequence of real functions defined on *E*. (*i*) Suppose that $x_0 \in E$ and that each f_k is continuous at $x_0 \in E$. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on *E*, then *f* is continuous at $x_0 \in E$.

WEN-CHING LIEN Advanced Calculus (I)

Let *E* be a nonempty subset of **R** and let $\{f_k\}$ be a sequence of real functions defined on *E*. (*i*) Suppose that $x_0 \in E$ and that each f_k is continuous at $x_0 \in E$. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on *E*, then *f* is continuous at $x_0 \in E$.

(本部) (本語) (本語) (一語)

(ii)[Term-by-term integration] Suppose that E = [a, b] and that each f_k is integrable on [a,b]. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on [a,b], then f is integrable on [a,b] and

$$\int_a^b \sum_{k=1}^\infty f_k(x) dx = \sum_{k=1}^\infty \int_a^b f_k(x) dx.$$

WEN-CHING LIEN Advanced Calculus (I)

(ii)[Term-by-term integration]

Suppose that E = [a, b] and that each f_k is integrable on [a,b]. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on [a,b], then f is integrable on [a,b] and

$$\int_a^b \sum_{k=1}^\infty f_k(x) dx = \sum_{k=1}^\infty \int_a^b f_k(x) dx.$$

WEN-CHING LIEN Advanced Calculus (I)

(ii)[Term-by-term integration] Suppose that E = [a, b] and that each f_k is integrable on [a,b]. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on [a,b], then f is integrable on [a,b] and

$$\int_a^b \sum_{k=1}^\infty f_k(x) dx = \sum_{k=1}^\infty \int_a^b f_k(x) dx.$$

WEN-CHING LIEN Advanced Calculus (I)

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(iii)[Term-by-term differentation] Suppose that E is bounded, open interval and that each f_k is differentiable on E. If $\sum_{k=1}^{\infty} f_k$ converges at some $x_0 \in E$, and $\sum_{k=1}^{\infty} f'_k$ converges uniformly on E, then $f := \sum_{k=1}^{\infty} f_k$ converges uniformly on E, f is differentiable on E, and $\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x)$

$$\setminus k=1$$

for
$$x \in E$$
.

・ロ・ ・ 四・ ・ 回・ ・ 日・

(iii)[Term-by-term differentation]

Suppose that *E* is bounded, open interval and that each f_k is differentiable on *E*. If $\sum_{k=1}^{\infty} f_k$ converges at some $x_0 \in E$, and $\sum_{k=1}^{\infty} f'_k$ converges uniformly on *E*, then $f := \sum_{k=1}^{\infty} f_k$ converges uniformly on *E*, *f* is differentiable on *E*, and

$$\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x)$$

for
$$x \in E$$
.

< □ > < □ > < □ >

(iii)[Term-by-term differentation] Suppose that E is bounded, open interval and that each f_k is differentiable on E. If $\sum_{k=1}^{\infty} f_k$ converges at some $x_0 \in E$, and $\sum_{k=1}^{\infty} f'_k$ converges uniformly on E, then $f := \sum_{k=1}^{\infty} f_k$ converges uniformly on E, f is differentiable on E, and

$$\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x)$$

for $x \in E$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

臣

Theorem (Weierstrass M-test)

Let *E* be a nonempty subset of **R**, let $f_k : E \to R$, $k \in \mathbf{N}$, and let $M_k \ge 0$ satisfy $\sum_{k=1}^{\infty} M_k < \infty$. If $|f_k(x)| \le M_k$ for $k \in \mathbf{N}$ and $x \in E$, then $\sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly on *E*.

Theorem (Weierstrass M-test)

Let *E* be a nonempty subset of **R**, let $f_k : E \to R$, $k \in \mathbf{N}$, and let $M_k \ge 0$ satisfy $\sum_{k=1}^{\infty} M_k < \infty$. If $|f_k(x)| \le M_k$ for $k \in \mathbf{N}$ and $x \in E$, then $\sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly on *E*.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Theorem (Dirichlet's Test for uniform convergence)

Let *E* be a nonempty subset of **R** and suppose that $f_k, g_k : E \to R, k \in \mathbf{N}$. If

$$\left|\sum_{k=1}^n f_k(x)\right| \le M < \infty$$

for $n \in \mathbb{N}$ and $x \in E$, and if $g_k \downarrow 0$ uniformly on E as $k \to \infty$, then $\sum_{k=1}^{\infty} f_k g_k$ converges uniformly on E.

WEN-CHING LIEN Advanced Calculus (I)

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Dirichlet's Test for uniform convergence)

Let *E* be a nonempty subset of **R** and suppose that $f_k, g_k : E \to R, k \in \mathbf{N}$. If

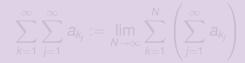
$$\left|\sum_{k=1}^n f_k(x)\right| \le M < \infty$$

for $n \in \mathbf{N}$ and $x \in E$, and if $g_k \downarrow 0$ uniformly on E as $k \to \infty$, then $\sum_{k=1}^{\infty} f_k g_k$ converges uniformly on E.

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A double series is convergent if and only if

and



exists and is finite.

WEN-CHING LIEN Advanced Calculus (I)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A double series is convergent if and only if

$$\sum_{j=1}^{\infty} a_{k_j}$$
 converges for each $k \in \mathbf{N}$

and

 $\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}a_{k_j}:=\lim_{N\to\infty}\sum_{k=1}^{N}\left(\sum_{j=1}^{\infty}a_{k_j}\right)$

exists and is finite.

WEN-CHING LIEN Advanced Calculus (I)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A double series is convergent if and only if

$$\sum_{j=1}^\infty a_{k_j}$$
 converges for each $k\in \mathbf{N}$

and

$$\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}a_{k_j}:=\lim_{N\to\infty}\sum_{k=1}^{N}\left(\sum_{j=1}^{\infty}a_{k_j}\right)$$

exists and is finite.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let $a_{k_i} \in \mathbf{R}$ for $k, j \in \mathbf{N}$ and suppose that

$$A_j = \sum_{k=1}^{\infty} |a_{k_j}| < \infty$$

for each $j \in \mathbf{N}$. If $\sum_{j=1}^{\infty}$ converges (i.e., the double sum converges absolutely), then

$$\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}a_{k_j}=\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}a_{k_j}$$

WEN-CHING LIEN Advanced Calculus (I)

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Let $a_{k_i} \in \mathbf{R}$ for $k, j \in \mathbf{N}$ and suppose that

$$A_j = \sum_{k=1}^{\infty} |a_{k_j}| < \infty$$

for each $j \in \mathbf{N}$. If $\sum_{j=1}^{\infty}$ converges (i.e., the double sum converges absolutely), then

$$\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}a_{k_j}=\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}a_{k_j}$$

WEN-CHING LIEN Advanced Calculus (I)

Let $E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$. For each $j \in \mathbb{N}$, define a function f_j on E by

$$f_j(0) = \sum_{k=1}^{\infty} a_{k_j}, \quad f_j\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} a_{k_j}, \quad n \in \mathbb{N}.$$

By hypothesis, $f_j(0)$ exists and by the definition of series convergence,

$$\lim_{n\to\infty}f_j\left(\frac{1}{n}\right)=f_j(0);$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

Let $E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$. For each $j \in \mathbb{N}$, define a function f_j on E by

$$f_j(0) = \sum_{k=1}^{\infty} a_{k_j}, \quad f_j\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} a_{k_j}, \quad n \in \mathbb{N}.$$

By hypothesis, $f_j(0)$ exists and by the definition of series convergence,

$$\lim_{n\to\infty}f_j\left(\frac{1}{n}\right)=f_j(0);$$

Let $E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$. For each $j \in \mathbb{N}$, define a function f_j on E by

$$f_j(0) = \sum_{k=1}^{\infty} a_{k_j}, \quad f_j\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} a_{k_j}, \quad n \in \mathbb{N}.$$

By hypothesis, $f_j(0)$ exists and by the definition of series convergence,

$$\lim_{n\to\infty}f_j\left(\frac{1}{n}\right)=f_j(0);$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$. For each $j \in \mathbf{N}$, define a function f_j on E by

$$f_j(0) = \sum_{k=1}^{\infty} a_{k_j}, \quad f_j\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} a_{k_j}, \quad n \in \mathbb{N}.$$

By hypothesis, $f_j(0)$ exists and by the definition of series convergence,

$$\lim_{n\to\infty}f_j\left(\frac{1}{n}\right)=f_j(0);$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Let $E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$. For each $j \in \mathbf{N}$, define a function f_j on E by

$$f_j(0) = \sum_{k=1}^{\infty} a_{k_j}, \quad f_j\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} a_{k_j}, \quad n \in \mathbb{N}.$$

By hypothesis, $f_j(0)$ exists and by the definition of series convergence,

$$\lim_{n\to\infty}f_j\left(\frac{1}{n}\right)=f_j(0);$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let $E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$. For each $j \in \mathbf{N}$, define a function f_j on E by

$$f_j(0) = \sum_{k=1}^{\infty} a_{k_j}, \quad f_j\left(\frac{1}{n}\right) = \sum_{k=1}^{\infty} a_{k_j}, \quad n \in \mathbb{N}.$$

By hypothesis, $f_j(0)$ exists and by the definition of series convergence,

$$\lim_{n\to\infty}f_j\left(\frac{1}{n}\right)=f_j(0);$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

i.e., f_j is continuous at $0 \in E$ for each $j \in \mathbb{N}$. Moreover, since $|f_j(x)| \le A_j$ for all $x \in E$ and $j \in \mathbb{N}$, The Weierstrass M-Test implies that

converges uniformly on E.

WEN-CHING LIEN Advanced Calculus (I)

・ロ・ ・ 四・ ・ 回・ ・ 日・

i.e., f_j is continuous at $0 \in E$ for each $j \in \mathbb{N}$. Moreover, since $|f_j(x)| \le A_j$ for all $x \in E$ and $j \in \mathbb{N}$, The Weierstrass M-Test implies that

converges uniformly on E.

WEN-CHING LIEN Advanced Calculus (I)

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

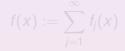
i.e., f_j is continuous at $0 \in E$ for each $j \in \mathbb{N}$. Moreover, since $|f_j(x)| \le A_j$ for all $x \in E$ and $j \in \mathbb{N}$, The Weierstrass M-Test implies that

converges uniformly on E.

WEN-CHING LIEN Advanced Calculus (I)

・ロン ・四 ・ ・ 回 ・ ・ 回 ・

i.e., f_j is continuous at $0 \in E$ for each $j \in \mathbb{N}$. Moreover, since $|f_j(x)| \leq A_j$ for all $x \in E$ and $j \in \mathbb{N}$, The Weierstrass M-Test implies that



converges uniformly on E.

WEN-CHING LIEN Advanced Calculus (I)

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

臣

i.e., f_j is continuous at $0 \in E$ for each $j \in \mathbb{N}$. Moreover, since $|f_j(x)| \leq A_j$ for all $x \in E$ and $j \in \mathbb{N}$, The Weierstrass M-Test implies that

$$f(x) := \sum_{j=1}^{\infty} f_j(x)$$

converges uniformly on E.

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{k_j} = \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{j=1}^{\infty} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{n} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} f_j \left(\frac{1}{n}\right)$$
$$= f(0) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{k_j}.$$

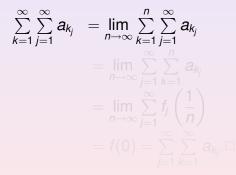
WEN-CHING LIEN Advanced Calculus (I)

<日>< 日> < 日> < 日>

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{k_j} = \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{j=1}^{\infty} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{n} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} f_j \left(\frac{1}{n}\right)$$
$$= f(0) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{k_j}.$$

WEN-CHING LIEN Advanced Calculus (I)

(ロ) (四) (日) (日) (日) (日)



WEN-CHING LIEN Advanced Calculus (I)

(ロ) (四) (日) (日) (日) (日)

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{k_j} = \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{j=1}^{\infty} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{n} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} f_j \left(\frac{1}{n}\right)$$
$$= f(0) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{k_j}.$$

WEN-CHING LIEN Advanced Calculus (I)

- ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ = @

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{k_j} = \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{j=1}^{\infty} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{n} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} f_j \left(\frac{1}{n}\right)$$
$$= f(0) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{k_j}$$

WEN-CHING LIEN Advanced Calculus (I)

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{k_j} = \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{j=1}^{\infty} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} \sum_{k=1}^{n} a_{k_j}$$
$$= \lim_{n \to \infty} \sum_{j=1}^{\infty} f_j \left(\frac{1}{n}\right)$$
$$= f(0) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{k_j}.$$

WEN-CHING LIEN Advanced Calculus (I)

Thank you.

WEN-CHING LIEN Advanced Calculus (I)