1. Derive the Adams-Bashforth method of order 3
 \[y_{n+1} = y_n + \frac{h}{12} \left[23y_n' - 16y_{n-1}' + 5y_{n-2}' \right] \]

2. Show that second order Runge-Kutta formulas of the form
 \[y_{n+1} = y_n + h \left[\gamma_1 f(x_n, y_n) + \gamma_2 f(x_n + \alpha h, y_n + \beta h f(x_n, y_n)) \right] \]
 should impose these conditions
 \[\gamma_1 + \gamma_2 = 1, \quad \gamma_2 \alpha = \frac{1}{2}, \quad \gamma_2 \beta = \frac{1}{2} \]

3. Show that the Trapezoidal method
 \[y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \right] \]
 is absolutely stable.

4. Implement the Gauss-Seidel iterative method as a MATLAB function.

5. Show that the general residual correction method
 \[r^{(k)} = b - Ax^{(k)} \]
 \[Ne^{(k)} = r^{(k)} \]
 \[x^{(k+1)} = x^{(k)} + e^{(k)} \]
 is exactly the same as the method
 \[Nx^{(k+1)} = b + Px^{(k)}. \]
 Here, \(A = N - P \).

6. Find the Cholesky factorization \(A = LL^T \) for the matrix
 \[A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 13 & 14 \\ 4 & 14 & 21 \end{pmatrix} \]

7. Suppose that \(P_2(x) \in \Pi_2 \) interpolates \(f \) at the three nodes \(x_0 = x_1 - h, x_1, \) and \(x_2 = x_1 + h. \) Show that
 \[P'(x_1) = \frac{f(x_1 + h) - f(x_1 - h)}{2h} \]
 and
 \[f'(x_1) = P'_2(x_1) - \frac{h^2}{6} f'''(c_2) \]
 with \(x_1 - h \leq c_2 \leq x_1 + h. \) Note that \(\Pi_2 \) is the set of polynomials of degree \(\leq 2 \)

8. Work out the 3-node Gaussian numerical integration formula
 \[\int_{-1}^{1} f(x) \, dx \approx \omega_1 f(x_1) + \omega_2 f(x_2) + \omega_3 f(x_3) \]
 by finding the nodes \(x_i \) and the weights \(\omega_i \) so that the formula is exact for polynomials of degree less than or equal to 5. Hint: Legendre polynomial \(P_3(x) = 5x^3 - 3x. \)