Probability

1. (10%) Find the expectation and variance of the random variable X if the distribution function of X is given by

\[P(x) = \begin{cases}
0, & \text{if } x < 0, \\
1 - \frac{3}{5} e^{-x}, & \text{if } x \geq 0.
\end{cases} \]

2. (15%) Let X be a random variable. Show that if \(\text{Var}(X) = 0 \), then \(P(X = E(X)) = 1 \).

3. Let X be a random variable distributed as negative binomial with p.d.f. (or p.m.f.)

\[f(x; r, p) = p^r \left(\frac{r + x - 1}{x} \right) (1 - p)^x, \quad x = 0, 1, \ldots, \quad 0 < p < 1, r = 1, 2, \ldots, \]

and let \(g(x) \) be a function with \(-\infty < E(g(X)) < +\infty \) and \(g(-1) = 0 \).

(a) (10%) Show that

\[\mathbb{E}(X) = \mathbb{E} \left[\frac{X}{r + X - 1} g(X - 1) \right]. \]

(b) (10%) Use (a) to find the expectation of X.

4. Let \(X_1, X_2, \ldots, X_n \) be independent random variables distributed as \(P(\lambda_1), P(\lambda_2), \ldots, P(\lambda_n) \), respectively. Let \(T = \sum_{j=1}^{n} X_j \) and \(\lambda = \sum_{j=1}^{n} \lambda_j \).

(a) (10%) Show that \(T \) is distributed as \(P(\lambda) \).

(b) (10%) Find the conditional distribution of \(X_j \), given \(T = t \). [Note that \(P(\lambda) \) denotes the Poisson distribution with parameter \(\lambda \).]

5. Let X and Y be two independent random variables distributed as Beta(\(\alpha, \beta \)) and Beta(\(\alpha + \beta, \gamma \)), respectively. Set \(U = XY \) and \(V = X \).

(a) (10%) Find the joint p.d.f. of U and V.

(b) (10%) What is the marginal distribution of U?

Note that the p.d.f. of Beta(\(\alpha, \beta \)) is given by

\[f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1, \quad \alpha, \beta > 0. \]

6. (15%) Let \(\{X_n\} \) be a sequence of random variables with \(P(X_n = \pm \frac{1}{n}) = \frac{1}{2} \).

Show that \(X_n \overset{a.s.}{\to} 0 \).