1. If \(x \sin x = \int_0^1 f(t) \, dt \) where \(f \) is a continuous function, find \(f(4) \). (10%)

2. Show that of all the isosceles triangles with a given perimeter, the one with the greatest area is equilateral. (12%)

3. A number \(x_0 \) is called a fixed point of a function \(f \) if \(f(x_0) = x_0 \).

 (a) Show that if \(f'(x) < 1 \) for all \(x \in \mathbb{R} \), then \(f \) has at most one fixed point. (10%)

 (b) Construct a function \(g \) such that \(g'(x) < 1 \) for all \(x \in \mathbb{R} \) and \(g \) has no fixed point. **Hint:** use \(\tan^{-1} x \). (10%)

4. If \(f(t) \) is continuous for \(t \geq 0 \), the Laplace transform of \(f \) is the function \(F \) defined by \(F(s) = \int_0^\infty f(t) e^{-st} \, dt \). Now suppose that \(0 \leq f(t) \leq Me^{at} \) and \(0 \leq f'(t) \leq Ke^{at} \) for \(t \geq 0 \), where \(f' \) is continuous. If the Laplace transform of \(f(t) \) is \(F(s) \), and the Laplace transform of \(f'(t) \) is \(G(s) \). Show that \(G(s) = sF(s) - f(0) \) for \(s > a \). (12%)

5. (a) Let \(a_1 = \sqrt{2} \) and \(a_{n+1} = \sqrt{2 + \sqrt{a_n}} \) for \(n = 1, 2, 3, \ldots \), show that \(\{a_n\} \) is convergent. (8%)

 (b) Prove that if \(a_n \geq 0 \) for all \(n \) and \(\sum_{n=1}^\infty a_n \) is convergent, then \(\sum_{n=1}^\infty \frac{\sqrt{a_n}}{n} \) is convergent. (8%)

6. Let \(T(x, y) = x^2 + xy + y^2 + x \) be the temperature function of the region \(\{(x, y) : x^2 + y^2 \leq 1, y \geq 0\} \). Find the maximal and the minimal temperature of this region. (15%)

7. Let \(R = \{(x, y) : x^2 + y^2 \leq 2, 0 \leq x \leq 1, y \geq 0\} \) and \(f(x, y) = \begin{cases} e^{x+y} & \text{if } x \leq y \\ 2e^{(1-y)} & \text{if } x > y. \end{cases} \)

 Evaluate the integral \(\int \int_R f(x, y) \, dA \). (15%)