Notations and Definitions:
- \(\mathbb{R}^n \): set of \(n \)-dimensional real vectors.
- \(\mathbb{R}^{n\times n} \): set of \(n \times n \) real matrices.
- \(\mathcal{P}_n(\mathbb{R}) \): set of real polynomials of degree \(\leq n \).
- \(A^T \): the transpose of the matrix \(A \).
- \(A \in \mathbb{R}^{n\times n} \) is positive definite if \(z^TAz > 0 \) for any nonzero \(z \in \mathbb{R}^n \).

Problems:
1. Let \(\mathcal{V} \) be an \(m \) (\(m \leq n \)) dimensional subspace of \(\mathbb{R}^n \), \(P \in \mathbb{R}^{n\times n} \) be a projection on \(\mathcal{V} \), that is, \(Px \in \mathcal{V} \) for any \(x \in \mathbb{R}^n \) and \(Pv = v \) for any \(v \in \mathcal{V} \).
 (i) Show that \(\text{det} \ P = 0 \). \(10\% \)
 (ii) Let \(\{v_1, \ldots, v_m\} \) form an orthonormal basis of \(\mathcal{V} \). Find a project \(P \) on \(\mathcal{V} \) and represent \(P \) in a matrix form. \(10\% \)
2. Let \(x_0 < x_1 < \cdots < x_n \) be \(n+1 \) distinct real numbers and \(y_k \in \mathbb{R} \), \(k = 0, 1, \ldots, n \). Show that there is a unique polynomial \(p(x) \in \mathcal{P}_n(\mathbb{R}) \) such that \(p(x_k) = y_k \), \(k = 0, 1, \ldots, n \). \(10\% \)
3. Let \(A = A^T, B, D = D^T \in \mathbb{R}^{n\times n} \) and \(I \in \mathbb{R}^{n\times n} \) be the identity matrix.
 (i) Assume that \(A \) is positive definite. Show that if \(D - B^T A^{-1} B \) is positive definite, then \(M = \begin{bmatrix} A & B \\ B^T & D \end{bmatrix} \) is also positive definite. \(10\% \)
 (ii) Verify if if \(\gamma > \|B\|_2^2 \), then \(M = \begin{bmatrix} I & B \\ B^T & \gamma I \end{bmatrix} \) is also positive definite. Here \(\|B\|_2^2 = \sup_{x \neq 0} \frac{x^T B^T B x}{x^T x} \). \(10\% \)
4. Assume that \(A \in \mathbb{R}^{n\times n} \) is fixed. Let \(T \) be a linear operator on \(\mathbb{R}^{n\times n} \) defined by \(T(B) = AB \). Show that the minimal polynomial for \(T \) is the minimal polynomial for \(A \). \(10\% \)
5. Let \(\mathcal{U} \) be an inner product space consisting of continuous complex-valued functions on the interval \(0 \leq x \leq 1 \) with the inner product
 \[(f|g) = \int_0^1 f(x) g(x) dx \] for any \(f, g \in \mathcal{U} \).
 (i) Show that \(h_k(x) = e^{2\pi ikx} \), \(k = \pm 1, \pm 2, \ldots \) are mutually orthogonal. Here \(i = \sqrt{-1} \). \(5\% \)
 (ii) Verify the Bessel's inequality
 \[\sum_{k=-n}^{n} \left| \int_0^1 f(t) e^{2\pi ikx} dt \right|^2 \leq \int_0^1 |f(t)|^2 dt \] for \(f \in \mathcal{U} \). \(10\% \)

1
6. Let
\[W = \{ f : [0, 1] \to \mathbb{R} \mid f \in C^2([0, 1]) \text{ and } f(0) = 0 = f(1) \} \]
be an inner product space with the inner product
\[(f | g) = \int_0^1 f(x)g(x)dx \]
for any \(f, g \in W \).

Here \(f \in C^2([0, 1]) \) means that \(f \) is defined on \([0, 1]\) and its second derivative is also defined and continuous on \([0, 1]\). Let \(D^2 \) be an operator on \(W \) defined by
\[D^2(f) = \frac{d^2f}{dx^2} \]
for \(f \in W \).

(i) Show that \(D^2 \) is self-adjoint. 10% (Hint: Use integration by parts!)

(ii) Show that \(D^2 \) is positive definite, i.e., \((D^2f|f) > 0 \) for any nonzero function \(f \in W \). 10%

7. Let \(T : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R}) \) be defined by \(T(f) = f(0) + f(1)(x + x^2) \). Show that \(T \) is diagonalizable. 10%