1. (15 pts.) Suppose \(\{a_n\}_{n \in \mathbb{N}} \) is a sequence of positive numbers. Show that

\[
\lim_{n \to +\infty} \sqrt[n]{a_n} \leq \lim_{n \to +\infty} \frac{a_{n+1}}{a_n}.
\]

2. Suppose \(f : [a, b] \to \mathbb{R} \) is a \(C^1 \) injection.
 (a). (7 pts.) Show that \(\int_a^b f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(y)dy = bf(b) - af(a) \).
 (b). (7 pts.) If \(f(x) \geq 0, \forall x \in [a, b] \), give a geometric interpretation for the formula in (a).
 (c). (6 pts.) Evaluate \(\int_0^1 \left((x - 1)\frac{1}{2} + 1 \right)^{\frac{1}{2}} dx \).

3. (15 pts.) Suppose \(E \) is a nonempty compact subset of \(\mathbb{R}^n \) and \(f, g : \mathbb{R}^n \to \mathbb{R} \) are \(C^1 \) such that \(f = g \) on the boundary of \(E \). Show that there is a point \(x_0 \in E \) such that \(\nabla f(x_0) = \nabla g(x_0) \).

4. (15 pts.) If \(\{f_n\}_{n \in \mathbb{N}} \) converges to \(f \) uniformly on every closed subinterval of \((0, 1) \), does it follow that \(\{f_n\}_{n \in \mathbb{N}} \) converges to \(f \) uniformly on \((0, 1) \)? Support your statement with either a proof or a counterexample.

5. (a). (8 pts.) State the Implicit Function Theorem.
 (b). (7 pts.) Decide whether it is possible to solve the pair of equations

\begin{align*}
xy^2 + xzu + yv^2 - 3 &= 0 \\
u^2yz + 2xu - u^2v^2 - 2 &= 0
\end{align*}

for \(u \) and \(v \) as \(C^1 \) functions of \((x, y, z) \) in a neighborhood of the points \((u, v) = (1, 1) \) and \((x, y, z) = (1, 1, 1) \).

6. For any \(n \in \mathbb{N} \), let \(a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} - \ln n \).
 (a). (10 pts.) Show that \(\{a_n\}_{n \in \mathbb{N}} \) is convergent to \(\gamma \) for some \(\gamma \in \mathbb{R} \).
 (b). (10 pts.) Express \(1 + \frac{1}{2} + \cdots + \frac{1}{n} \) as \(1 + \frac{1}{2} + \cdots + \frac{1}{n} = \gamma + \ln n + \varepsilon_n \) to evaluate

\[
\sum_{k=1}^{+\infty} \frac{1}{k(2k-1)}.
\]